Rischioni, Lucas Germano und Babu, Arun und Baumgartner, Stefan V. und Krieger, Gerhard (2023) Machine Learning Approaches for Road Condition Monitoring Using Synthetic Aperture Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3258059. ISSN 1939-1404.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
50MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10073636
Kurzfassung
Airborne Synthetic Aperture Radar (SAR) has the potential to monitor remotely the road traffic infrastructure on a large scale. Of particular interest is the road surface roughness, which is an important road safety parameter. For this task, novel algorithms need to be developed. Machine learning approaches, such as Artificial Neural Networks (ANN) and Random Forest Regression, which can perform non-linear regression, can achieve this goal. This work considers fully polarimetric airborne radar datasets captured with DLR’s airborne F-SAR radar system. Several machine learning-based approaches were tested on the datasets to estimate road surface roughness. The resulting models were then compared with ground truth surface roughness values and also with the semi-empirical surface roughness model studied in previous work.
elib-URL des Eintrags: | https://elib.dlr.de/194372/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Machine Learning Approaches for Road Condition Monitoring Using Synthetic Aperture Radar | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 16 März 2023 | ||||||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2023.3258059 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Synthetic aperture radar, additive noise, surface roughness, machine learning, vehicle safety. | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > Radarkonzepte | ||||||||||||||||||||
Hinterlegt von: | Babu, Arun | ||||||||||||||||||||
Hinterlegt am: | 20 Mär 2023 06:05 | ||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 15:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags