Ahmic, Kenan and Ultsch, Johannes and Brembeck, Jonathan and Winter, Christoph (2023) Reinforcement Learning-Based Path Following Control with Dynamics Randomization for Parametric Uncertainties in Autonomous Driving. Applied Sciences. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/app13063456. ISSN 2076-3417.
PDF
- Published version
4MB |
Official URL: https://www.mdpi.com/2076-3417/13/6/3456
Abstract
Reinforcement learning-based controllers for safety-critical applications, such as autonomous driving, are typically trained in simulation, where a vehicle model is provided during the learning process. However, an inaccurate parameterization of the vehicle model used for train-ing heavily influences the performance of the reinforcement learning agent during execution. This inaccuracy is either caused by changes due to environmental influences or by falsely esti-mated vehicle parameters. In this work, we present our approach of combining dynamics ran-domization with reinforcement learning to overcome this issue for a path-following control task of an autonomous and over-actuated robotic vehicle. We train three independent agents, where each agent experiences randomization for a different vehicle dynamics parameter, i.e., the mass, the yaw inertia, and the road-tire friction. We randomize the parameters uniformly within pre-defined ranges to enable the agents to learn an equally robust control behavior for all possible parameter values. Finally, in a simulation study, we compare the performance of the agents trained with dynamics randomization to the performance of an agent trained with the nominal parameter values. Simulation results demonstrate that the former agents obtain a higher level of robustness against model uncertainties and varying environmental conditions than the latter agent trained with nominal vehicle parameter values.
Item URL in elib: | https://elib.dlr.de/194223/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Reinforcement Learning-Based Path Following Control with Dynamics Randomization for Parametric Uncertainties in Autonomous Driving | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 9 March 2023 | ||||||||||||||||||||
Journal or Publication Title: | Applied Sciences | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.3390/app13063456 | ||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
Series Name: | Special Issue Technology Development of Autonomous Vehicles | ||||||||||||||||||||
ISSN: | 2076-3417 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | reinforcement learning; deep neural networks; dynamics randomization; autonomous driving; motion control; path following control; uncertainty modeling | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||
DLR - Research theme (Project): | R - Intelligent Mobility (SR) [RO] | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of System Dynamics and Control > Vehicle System Dynamics | ||||||||||||||||||||
Deposited By: | Ahmic, Kenan | ||||||||||||||||||||
Deposited On: | 03 Apr 2023 11:13 | ||||||||||||||||||||
Last Modified: | 28 Nov 2023 12:54 |
Repository Staff Only: item control page