
Citation: Ahmic, K.; Ultsch, J.;

Brembeck, J.; Winter, C.

Reinforcement Learning-Based Path

following Control with Dynamics

Randomization for Parametric

Uncertainties in Autonomous

Driving. Appl. Sci. 2023, 13, 3456.

https://doi.org/10.3390/

app13063456

Academic Editor: Dario Richiedei

Received: 30 January 2023

Revised: 23 February 2023

Accepted: 6 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Reinforcement Learning-Based Path following Control with
Dynamics Randomization for Parametric Uncertainties in
Autonomous Driving
Kenan Ahmic * , Johannes Ultsch , Jonathan Brembeck and Christoph Winter

Institute of System Dynamics and Control, Robotics and Mechatronics Center, German Aerospace Center (DLR),
82234 Weßling, Germany
* Correspondence: kenan.ahmic@dlr.de

Abstract: Reinforcement learning-based controllers for safety-critical applications, such as au-
tonomous driving, are typically trained in simulation, where a vehicle model is provided during the
learning process. However, an inaccurate parameterization of the vehicle model used for training
heavily influences the performance of the reinforcement learning agent during execution. This inac-
curacy is either caused by changes due to environmental influences or by falsely estimated vehicle
parameters. In this work, we present our approach of combining dynamics randomization with
reinforcement learning to overcome this issue for a path-following control task of an autonomous
and over-actuated robotic vehicle. We train three independent agents, where each agent experiences
randomization for a different vehicle dynamics parameter, i.e., the mass, the yaw inertia, and the
road-tire friction. We randomize the parameters uniformly within predefined ranges to enable the
agents to learn an equally robust control behavior for all possible parameter values. Finally, in a simu-
lation study, we compare the performance of the agents trained with dynamics randomization to the
performance of an agent trained with the nominal parameter values. Simulation results demonstrate
that the former agents obtain a higher level of robustness against model uncertainties and varying
environmental conditions than the latter agent trained with nominal vehicle parameter values.

Keywords: reinforcement learning; deep neural networks; dynamics randomization; autonomous
driving; motion control; path following control; uncertainty modeling

1. Introduction

Artificial intelligence has accelerated the development of autonomous vehicles, notably
over the past decade [1,2]. It has successfully been applied for several autonomous driving
tasks, including motion planning [3,4] and motion control [5]. Especially the application
of reinforcement learning for motion control has gained increasing interest, where so-
called agents are trained to approximate optimal control policies [6,7]. Agents for safety-
critical applications, such as autonomous driving, are often trained in simulation, where a
learning model of the system needs to be provided. This allows a safe training of agents
without risking dangerous accidents involving humans or the destruction of the real-world
system, which is especially important since the agents explore different and possibly unsafe
actions during training in order to find an optimal control policy. Additionally, training in
simulation is fast and scalable. After the training process is successfully completed, agents
are then transferred to and executed on the real-world system. However, agents often show
poor results during execution if specific dynamics parameters of the learning model are
uncertain at training time or if they differ from the actual values of the system due to an
inaccurate system identification process [8]. Furthermore, parameter values might change
and vary over time due to environmental influence. In the case of autonomous vehicles,
these issues often occur since it is not possible to determine the values of specific dynamics
parameters beforehand that will be valid for every driving scenario. For example, an agent

Appl. Sci. 2023, 13, 3456. https://doi.org/10.3390/app13063456 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063456
https://doi.org/10.3390/app13063456
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2266-1067
https://orcid.org/0000-0001-6483-8468
https://orcid.org/0000-0002-7671-5251
https://orcid.org/0000-0002-6949-303X
https://doi.org/10.3390/app13063456
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063456?type=check_update&version=2

Appl. Sci. 2023, 13, 3456 2 of 24

can be trained with the nominal vehicle mass and perform well in this particular use case.
However, the performance of the agent might decrease drastically if humans or a heavy
load are onboard, since this additional load changes the dynamical behavior of the system.
Similarly, the tire-road friction depends on the current weather condition and frequently
changes over time. On a sunny day, the road-tire friction will be higher than on a snowy
one. These uncertainties need to be considered in the learning model to enable the training
of robust agents for the application of motion control tasks for autonomous driving.

In the field of robotics, dynamics randomization [8–10] is being applied to circumvent
this issue of parameter uncertainty during the reinforcement learning training process.
Here, the values of certain dynamics parameters are randomized within a predefined range
at the start of each training episode. This forces the agents to learn robust control behavior
for all values within the given range. In [8], the authors leverage dynamics randomization
to learn robust reinforcement learning policies for the locomotion of a quadruped robot.
They randomize dynamics such as mass, motor friction, and inertia. Similarly, the authors
of [9] successfully apply dynamics randomization for an object pushing task, where both the
dynamics of the robotic arm as well as the dynamics of the moved object are randomized.
In [10], robust control policies are learned for a robot pivoting task. In all three cases, robust
policies are successfully generated for the respective target application. However, the
control problem addressed in our work is significantly different since neither a robotic arm
nor a walking robot is being trained but rather an autonomous and over-actuated robotic
vehicle. The effect of uncertain dynamics parameters on the performance of reinforcement
learning agents for vehicle motion control still needs to be investigated.

In [11], the authors apply dynamics randomization in the context of autonomous
driving and randomize certain elements of the vehicle, such as the steering response and
the latency of the system. Nevertheless, randomization was not applied to important
dynamics parameters of the vehicle model, such as the mass and the road-tire friction.
These values play an important role and have a major impact on the overall dynamical
behavior of vehicles. Therefore, it is still necessary to examine the influence that the
aforementioned dynamics parameters might have on agents for vehicle motion control if
they are uncertain.

1.1. Contribution of This Paper

The contribution of this paper is threefold. First, we enable the training of agents for
motion control tasks in autonomous driving with increased robustness against parametric
uncertainties and varying parameter values. This is done by applying dynamics random-
ization to a reinforcement learning-based path following control (PFC) problem for the
over-actuated and robotic vehicle ROboMObil [12,13] at the German Aerospace Center.

Secondly, we train several reinforcement learning agents where each agent experiences
randomization for a different parameter of the vehicle dynamics. The first agent encounters
randomization in the mass in order to examine the effect of different vehicle loads on the
agent’s control performance. The second agent undergoes randomization of the inertia
value since the inertia value is difficult to measure and is therefore often only roughly
estimated. The third agent is trained with a randomized tire-road friction coefficient, since
this value frequently changes based on the current weather.

Lastly, we perform a detailed sim-to-sim study and extensively compare the perfor-
mance and robustness of the agents trained with dynamics randomization to the perfor-
mance of an agent trained with fixed nominal parameters. We additionally give insight on
the influence particular dynamics parameters might have on agents for the control task at
hand. This sim-to-sim study provides valuable information for a substantiated preparation
for robust applications on the real-world vehicle.

1.2. Paper Overview

The remainder of this work is organized as follows. In Section 2, the problem addressed
in this work is stated. Section 3 presents the reinforcement learning framework for the path-

Appl. Sci. 2023, 13, 3456 3 of 24

following control problem and introduces the dynamics randomization scheme applied to
the agents. Section 4 describes the training setup. In Section 5, we assess the robustness
and performance of the trained agents. Lastly, in Section 6, we conclude this work and give
an outlook.

1.3. Notation

Several reference coordinate systems are considered for the path-following control
problem. More specifically, a path frame, a vehicle frame, and an inertial frame are utilized,
which are represented by the superscripts P, C and I, respectively. Furthermore, the
subscripts P and C denote whether a value within the control problem denotes a property
of the path or the vehicle.

2. Problem Statement

Figure 1 shows the action loop for the path following control task considered in
this work. First, suitable sensors should detect the path boundaries, and the planned
path should be closely followed. Afterwards, the path is forwarded to the reinforcement
learning-based path-following controller, which is trained in simulation with the vehicle
model of the target vehicle.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 24

at hand. This sim-to-sim study provides valuable information for a substantiated prepa-
ration for robust applications on the real-world vehicle.

1.2. Paper Overview
The remainder of this work is organized as follows. In Section 2, the problem ad-

dressed in this work is stated. Section 3 presents the reinforcement learning framework
for the path-following control problem and introduces the dynamics randomization
scheme applied to the agents. Section 4 describes the training setup. In Section 5, we assess
the robustness and performance of the trained agents. Lastly, in Section 6, we conclude
this work and give an outlook.

1.3. Notation
Several reference coordinate systems are considered for the path-following control

problem. More specifically, a path frame, a vehicle frame, and an inertial frame are uti-
lized, which are represented by the superscripts P, C and I, respectively. Furthermore,
the subscripts P and C denote whether a value within the control problem denotes a
property of the path or the vehicle.

2. Problem Statement
Figure 1 shows the action loop for the path following control task considered in this

work. First, suitable sensors should detect the path boundaries, and the planned path
should be closely followed. Afterwards, the path is forwarded to the reinforcement learn-
ing-based path-following controller, which is trained in simulation with the vehicle model
of the target vehicle.

Figure 1. The action loop for the considered path following control task.

Reinforcement learning agents in simulation-based environments are usually trained
with fixed model parameter values. In autonomous driving, however, some vehicle dy-
namics parameters might be uncertain or might change over time due to environmental
influence. This might negatively affect the agents’ performance during their execution if
the parameters cannot be determined beforehand or change after training. Figure 2 qual-
itatively shows this for a path-following motion control task. Let ߦ represent the dynam-
ics parameter of the vehicle model. Furthermore, assume that ߦ୲୰ୟ୧୬ is a fixed value for ߦ
that is applied to the vehicle learning model during training. On the left side of Figure 2,
it can be seen that the agent performs well after training and during execution if the actual
parameter ߦଵ of the vehicle equals the parameter ߦ୲୰ୟ୧୬. However, on the right side, the
agent is not able to provide a satisfying control performance during execution and drives
off the road since the true parameter ߦଶ of the vehicle differs from the fixed value ߦ୲୰ୟ୧୬
used during training. The possibility of such an unrobust control behavior poses a major
security risk.

Path Detection Path Planning RL-based Path
Following Control

Sensors Actuators

Environment

Figure 1. The action loop for the considered path following control task.

Reinforcement learning agents in simulation-based environments are usually trained
with fixed model parameter values. In autonomous driving, however, some vehicle dy-
namics parameters might be uncertain or might change over time due to environmental
influence. This might negatively affect the agents’ performance during their execution if
the parameters cannot be determined beforehand or change after training. Figure 2 qualita-
tively shows this for a path-following motion control task. Let ξ represent the dynamics
parameter of the vehicle model. Furthermore, assume that ξtrain is a fixed value for ξ that
is applied to the vehicle learning model during training. On the left side of Figure 2, it
can be seen that the agent performs well after training and during execution if the actual
parameter ξ1 of the vehicle equals the parameter ξtrain. However, on the right side, the
agent is not able to provide a satisfying control performance during execution and drives
off the road since the true parameter ξ2 of the vehicle differs from the fixed value ξtrain
used during training. The possibility of such an unrobust control behavior poses a major
security risk.

To overcome this issue and train robust agents for a path-following control task
in the presence of uncertain and changing dynamics parameters, we apply dynamics
randomization during the reinforcement learning process in this work. The underlying
path following control problem considered in this paper is based on our previous work
in [14] and is introduced in detail in Appendix A. We assume that the path boundaries
can be detected in each time step and that a path planning module, such as in [15], is
given. Furthermore, the learning model of the controlled vehicle is based on the extended
non-linear single-track model of the ROboMObil [12] (c.f. Appendix B). We assume that

Appl. Sci. 2023, 13, 3456 4 of 24

a nonlinear observer, such as in [16], estimates the necessary states for the reinforcement
learning controller.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 24

To overcome this issue and train robust agents for a path-following control task in
the presence of uncertain and changing dynamics parameters, we apply dynamics ran-
domization during the reinforcement learning process in this work. The underlying path
following control problem considered in this paper is based on our previous work in [14]
and is introduced in detail in Appendix A. We assume that the path boundaries can be
detected in each time step and that a path planning module, such as in [15], is given. Fur-
thermore, the learning model of the controlled vehicle is based on the extended non-linear
single-track model of the ROboMObil [12] (c.f. Appendix B). We assume that a nonlinear
observer, such as in [16], estimates the necessary states for the reinforcement learning con-
troller.

Figure 2. The performance of agents during execution for different values of a representative dy-
namics parameter ߦ. (Left): The true parameter ߦଵ of the vehicle in the first environment equals the
value ߦ୲୰ୟ୧୬ applied during the simulation-based training and the agent shows a satisfying path
following control performance. (Right): The actual vehicle parameter ߦଶ in the second environment
differs from ߦ୲୰ୟ୧୬ and the agent shows a poor path following control performance.

3. Learning-Based Path Following Control with Parametric Uncertainties
In deep reinforcement learning [17], a neural network represents the agent and inter-

acts with an environment, receiving a reward in each time step. Here, the reward encodes
the control goal. Based on the observed state of the environment, the agent applies an
action and obtains a reward. The agent learns to solve a predefined control task by max-
imizing the expected sum of rewards in the environment. For the interested reader, the
fundamentals of deep reinforcement learning are introduced in more detail in Appendix
C. In this section, we introduce the observation space of the environment, the action space
of the agent, and the reward function design for the path following control task at hand.
Furthermore, the dynamics randomization scheme is presented.

3.1. Oberservation Space of the Path Following Control Environment
The agents trained for the path following control task should minimize certain errors

between the ROboMObil and the path, which is assumed to be provided by the ROboMO-
bil’s path planning module [15,18]. More specifically, the agents should minimize the ve-
hicle’s lateral position error ݁௬୔ and orientation error ݁ట to the path. Furthermore, the
agents should closely track the demanded velocity in the tangential direction of the path,
i.e., minimize the velocity error ݁௩୔ೣ (cf. Appendix A).

To successfully minimize these errors and learn the control task, the agents require a
suitable observation space during training that contains all the necessary information re-
garding the environment. In this work, the observation vector ࢙௞, also called the state, is
chosen based on our previous work in [14]. Here, the aforementioned errors ݁௬୔, ݁ట and ݁௩୔ೣ as well as the velocity error ݁௩೤୔ in the lateral direction of the path (cf. Appendix A),
are provided for the observation vector. Furthermore, the path curvature ߢ୔ and the front
and rear steering angles ߜ୤ and ߜ୰ of the ROboMObil are incorporated into the observa-
tion vector ࢙௞. Lastly, the observation vector ࢙௞ in the time step ݇ is extended with the

Figure 2. The performance of agents during execution for different values of a representative
dynamics parameter ξ. (Left): The true parameter ξ1 of the vehicle in the first environment equals
the value ξtrain applied during the simulation-based training and the agent shows a satisfying path
following control performance. (Right): The actual vehicle parameter ξ2 in the second environment
differs from ξtrain and the agent shows a poor path following control performance.

3. Learning-Based Path following Control with Parametric Uncertainties

In deep reinforcement learning [17], a neural network represents the agent and inter-
acts with an environment, receiving a reward in each time step. Here, the reward encodes
the control goal. Based on the observed state of the environment, the agent applies an action
and obtains a reward. The agent learns to solve a predefined control task by maximizing the
expected sum of rewards in the environment. For the interested reader, the fundamentals
of deep reinforcement learning are introduced in more detail in Appendix C. In this section,
we introduce the observation space of the environment, the action space of the agent, and
the reward function design for the path following control task at hand. Furthermore, the
dynamics randomization scheme is presented.

3.1. Oberservation Space of the Path following Control Environment

The agents trained for the path following control task should minimize certain errors
between the ROboMObil and the path, which is assumed to be provided by the RObo-
MObil’s path planning module [15,18]. More specifically, the agents should minimize the
vehicle’s lateral position error eP

y and orientation error eψ to the path. Furthermore, the
agents should closely track the demanded velocity in the tangential direction of the path,
i.e., minimize the velocity error eP

vx (cf. Appendix A).
To successfully minimize these errors and learn the control task, the agents require

a suitable observation space during training that contains all the necessary information
regarding the environment. In this work, the observation vector sk, also called the state, is
chosen based on our previous work in [14]. Here, the aforementioned errors eP

y , eψ and eP
vx

as well as the velocity error eP
vy in the lateral direction of the path (cf. Appendix A), are pro-

vided for the observation vector. Furthermore, the path curvature κP and the front and rear
steering angles δf and δr of the ROboMObil are incorporated into the observation vector sk.
Lastly, the observation vector sk in the time step k is extended with the observation σk−1 of
the aforementioned values from the previous time step k− 1, which incorporates beneficial
rate information into the learning process. This leads to the observation vector sk being

sk =
[
eP

y,k, eP
vx ,k, eP

vy ,k, eψ,k, κP,k, δf
k, δr

k, σk−1

]
(1)

with
σk−1 =

[
eP

y,k−1, eP
vx ,k−1, eP

vy ,k−1, eψ,k−1, κP,k−1, δf
k−1, δr

k−1

]
. (2)

Appl. Sci. 2023, 13, 3456 5 of 24

3.2. Action Space of the Agents

The control inputs the agent can apply to the extended non-linear single-track model
of the ROboMObil [12] are the front and rear axle steering rates

.
δf and

.
δr and the front and

rear in-wheel torques τf and τr, respectively. Both steering rates
.
δf and

.
δr are limited by the

maximal steering rate
.
δmax:

−
.
δmax ≤

.
δi ≤

.
δmax ∀i in {f, r}. (3)

Besides providing the steering rates to the vehicle, the agent also commands the front
and rear in-wheel torques τf and τr. The torques are limited by the maximum torque τmax:

− τmax ≤ τi ≤ τmax ∀i in {f, r}. (4)

3.3. Design of the Reward Function

The design of the reward function provides a crucial degree of freedom in reinforce-
ment learning. As mentioned above, the agent should be rewarded positively when it
approaches the control goal, i.e., when it has small or no errors to the path. For the path-
following control task, the agent should learn to control the vehicle such that the lateral
offset eP

y , the orientation error eψ and the velocity errors eP
vx are minimized. However, as

mentioned in [14], the agent’s primary control goal should be to minimize the lateral posi-
tion error eP

y , since a large lateral offset could negatively influence safety and possibly cause
collisions. After minimizing the lateral position error, the agent should learn to control the
vehicle such that it achieves the commanded orientations and velocities and both eP

ψ and
eP

vx approach zero. Furthermore, smooth steering behavior should be favored. Therefore, a
hierarchical structure for the reward function is chosen, as in [14]. More specifically, the
reward function is set to

rPFC

(
eP

y , eP
ψ, eP

vx , ∆δf, ∆δr

)
= gθy

(
eP

y

)(
1 + re

(
eP

ψ, eP
vx

)
(1 + r∆δ(∆δf, ∆δr))

)
(5)

with re

(
eP

ψ, eP
vx

)
being

re

(
eP

ψ, eP
vx

)
= gθψ

(
eP

ψ

)
+ gθvx

(
eP

vx

)
(6)

and r∆δ(∆δf, ∆δr) being

r∆δ(∆δf, ∆δr) =
1

1 + cf|∆δf|+ cr|∆δr|
. (7)

Here, the expressions ∆δf and ∆δr denote the changes of the front and rear steering
angles between the two subsequent time steps k and k− 1 which are given by

∆δf = δf,k − δf,k−1

∆δr = δr,k − δr,k−1.
(8)

Furthermore, cf and cr represent their weighting parameters in (7) and are set manually.
In Equations (5) and (6), the functions gθ(x) are Gaussian-like functions

gθ(x) = θ1e
−x2
2θ2 (9)

with the properties

0 < gθ(x) ≤ θ1, ∀x ∈ R, ∀θ = [θ1, θ2] ∈ R2
+. (10)

For the reward rPFC

(
eP

y , eP
ψ, eP

vx , ∆δf, ∆δr

)
in Equation (5), the function gθy

(
eP

y

)
ap-

proaches zero for large lateral position errors eP
y and approaches θy,1 > 0 for small eP

y .

Appl. Sci. 2023, 13, 3456 6 of 24

Hence, the agent is rewarded for small lateral position errors. This term dominates the
overall reward, since it is the only term multiplied by one (cf. Equation (5)), which is
in-line with the hierarchical reward structure of prioritizing the minimization of the lateral
position error first [14]. Furthermore, the value of gθy

(
eP

y

)
is multiplied by the reward term

re

(
eP

ψ, eP
vx

)
consisting of the Gaussian-like functions gθψ

(
eP

ψ

)
and gθvx

(
eP

vx

)
(cf. Equation

(6)) for the orientation and velocity errors eP
ψ and eP

vx in Equation (5), which can further in-

crease the overall reward rPFC

(
eP

y , eP
ψ, eP

vx , ∆δf, ∆δr

)
once the agent has successfully learned

to minimize eP
y , i.e., maximize the function gθy

(
eP

y

)
. Finally, after minimizing the lateral

position error eP
y , the orientation error eP

ψ, and the velocity error eP
vx , the agent receives a fur-

ther reward determined by r∆δ(∆δf, ∆δr) if it controls the vehicle such that there is a small
steering rate between two subsequent time steps to favor smooth control of the vehicle.

3.4. Learning with Dynamics Randomization

Dynamics randomization [8–10] allows robust policies to be trained in cases where
dynamics parameters are uncertain, difficult to measure, or frequently change over time.
When dynamics randomization is applied, the dynamics parameters are sampled from a
specific distribution at the beginning of each training episode. Figure 3 depicts this for
a representative parameter ξ. Often, a uniform distribution U (a, b) within a predefined
parameter range between the values a and b is chosen [8]. This enables the agent to learn a
successful control performance for the entire uniformly distributed parameter range with-
out favoring specific parameter values. In [8] it was shown that dynamics randomization
can be interpreted as a trade-off between optimality and robustness. Therefore, the ranges
in which the parameters are randomized need to be thoughtfully chosen to prevent the
agents from learning overly conservative control behaviors.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 24

with the properties

For the reward ݎ୔୊େ൫݁௬୔, ݁ట୔, ݁௩୔ೣ , Δߜ୤, Δߜ୰൯ in Equation (5), the function ݃ࣂ೤൫݁௬୔൯ ap-
proaches zero for large lateral position errors ݁௬୔ and approaches ߠ௬,ଵ > 0 for small ݁௬୔.
Hence, the agent is rewarded for small lateral position errors. This term dominates the
overall reward, since it is the only term multiplied by one (cf. Equation (5)), which is in-
line with the hierarchical reward structure of prioritizing the minimization of the lateral
position error first [14]. Furthermore, the value of ݃ࣂ೤൫݁௬୔൯ is multiplied by the reward
term ݎ௘൫݁ట୔, ݁௩୔ೣ ൯ consisting of the Gaussian-like functions ݃ࣂഗ൫݁ట୔൯ and ݃ࣂೡೣ ൫݁௩୔ೣ ൯ (cf.
Equation (6)) for the orientation and velocity errors ݁ట୔ and ݁௩୔ೣ in Equation (5), which
can further increase the overall reward ݎ୔୊େ൫݁௬୔, ݁ట୔, ݁௩୔ೣ , Δߜ୤, Δߜ୰൯ once the agent has suc-
cessfully learned to minimize ݁௬୔, i.e., maximize the function ݃ࣂ೤൫݁௬୔൯. Finally, after mini-
mizing the lateral position error ݁௬୔, the orientation error ݁ట୔ , and the velocity error ݁௩୔ೣ ,
the agent receives a further reward determined by ݎ୼ஔ(Δߜ୤, Δߜ୰) if it controls the vehicle
such that there is a small steering rate between two subsequent time steps to favor smooth
control of the vehicle.

3.4. Learning with Dynamics Randomization
Dynamics randomization [8–10] allows robust policies to be trained in cases where

dynamics parameters are uncertain, difficult to measure, or frequently change over time.
When dynamics randomization is applied, the dynamics parameters are sampled from a
specific distribution at the beginning of each training episode. Figure 3 depicts this for a
representative parameter ߦ. Often, a uniform distribution ࣯(ܽ, ܾ) within a predefined
parameter range between the values ܽ and ܾ is chosen [8]. This enables the agent to learn
a successful control performance for the entire uniformly distributed parameter range
without favoring specific parameter values. In [8] it was shown that dynamics randomi-
zation can be interpreted as a trade-off between optimality and robustness. Therefore, the
ranges in which the parameters are randomized need to be thoughtfully chosen to prevent
the agents from learning overly conservative control behaviors.

Figure 3. Dynamics randomization scheme at the beginning of each training episode for a repre-
sentative dynamics parameter ߦ. First, the parameter ߦ which should be randomized is selected
and forwarded to the dynamics randomization module (top arrow). Afterwards, the randomized
value ߦ୰୬ୢ of the parameter ߦ is returned to the vehicle model (bottom arrow).

In this work, three agents are trained, whereby each agent experiences randomiza-
tion for a different parameter of the vehicle model. More specifically, the parameters that
are being randomized are the vehicle mass ݉, the yaw inertia ܬ௭େ of the vehicle, and the
tire-road friction coefficient ߤ (cf. Appendix B), which are often randomized in such set-
ups [8,9]. More specifically, in this work, these particular randomizations are considered
for the path-following control task based on the following reasons: the overall system

(ݔ)ࣂ݃ = ଵ݁ି௫మଶఏమߠ (9)

0 < (ݔ)ࣂ݃ ≤ ,ଵߠ ݔ∀ ∈ Թ, ࣂ∀ = ,ଵߠ] [ଶߠ ∈ Թାଶ . (10)

Figure 3. Dynamics randomization scheme at the beginning of each training episode for a represen-
tative dynamics parameter ξ. First, the parameter ξ which should be randomized is selected and
forwarded to the dynamics randomization module (top arrow). Afterwards, the randomized value
ξrnd of the parameter ξ is returned to the vehicle model (bottom arrow).

In this work, three agents are trained, whereby each agent experiences randomization
for a different parameter of the vehicle model. More specifically, the parameters that are
being randomized are the vehicle mass m, the yaw inertia JC

z of the vehicle, and the tire-road
friction coefficient µ (cf. Appendix B), which are often randomized in such setups [8,9].
More specifically, in this work, these particular randomizations are considered for the path-
following control task based on the following reasons: the overall system mass changes
every time a different load is placed inside the vehicle and also depends on whether a
passenger is onboard. The inertia value is often difficult to measure and can be only
estimated roughly. Furthermore, the tire-road friction frequently changes depending on
the current weather.

Besides training the three agents experiencing dynamics randomization, an agent with
the nominal vehicle dynamics parameters is also trained for the same PFC task, which
serves as a benchmark. To allow a straightforward comparison, the agents experiencing
randomization are set to have the same reward as well as the same action and observation

Appl. Sci. 2023, 13, 3456 7 of 24

spaces as the nominal agent experiencing no randomization. The different ranges of the
uniform distributions U (a, b) in which the vehicle mass m, the yaw inertia JC

z and the tire
friction µ are randomized are introduced in the following.

3.4.1. Mass Randomization

The first agent being trained with dynamics randomization experiences randomiza-
tion for the vehicle mass. The ROboMObil’s nominal mass is mROMO = 1013 kg. The
ROboMObil can either transport no passengers, a maximum of one passenger, or a certain
amount of load, leading to an unknown external load that might be placed in the vehicle
after training. Therefore, an external mass mext from a uniform distribution that covers all
three application cases is sampled and added to the ROboMObil’s mass, which enables the
agent to learn an equally successful control performance for the entire parameter range.
This leads to the randomized training mass mrnd being

mrnd = mROMO + mext. (11)

At the beginning of each episode, after sampling mext and adding it to mROMO, the
randomized training mass mrnd substitutes the vehicle model’s nominal mass mROMO. In
this work, the uniformly sampled external mass mext takes a value within the range

0 kg ≤ mext ≤ 300 kg (12)

3.4.2. Inertia Randomization

The second agent experiences randomization in the yaw inertia. The nominal yaw
inertia value for the ROboMObil is JC

z,nom = 1130 kgm2. Since this is an estimated value, we
assume that it has a significant amount of uncertainty within a ±20 % range of the nominal
inertia value. Therefore, a randomized inertia value JC

z,rnd within the interval

(1− 0.2)JC
z,nom ≤ JC

z,rnd ≤ (1 + 0.2)JC
z,nom (13)

is sampled beginning with every training episode to enable the agent to learn a successful
control performance for the entire range of possible inertia values.

3.4.3. Friction Randomization

The third agent being trained with dynamics randomization experiences random-
ization for the road-tire friction. By varying the friction during training, the agent has
the opportunity to learn how to control the vehicle robustly in various street conditions,
such as on a dry surface, a wet surface, or a surface covered in snow. The friction has
a proportional influence on the front and rear side wheel forces (cf. Equation (A14) of
Pacejka’s Magic Formula (MF) [19] for the side wheel forces in Appendix B). The influence
of different friction values on the side wheel forces is demonstrated in Figure 4. Here, the
friction coefficient µ = 1.0 represents a dry, µ = 0.8 a wet, and µ = 0.6 a snowy road. It
can be seen that, with decreasing friction µ, the maximal lateral tire forces also decrease.
This drastically influences the vehicle’s dynamic behavior and, consequently, affects the
control performance.

To enable the agent to learn an equally robust and successful vehicle control strategy
for different street conditions, a uniformly sampled friction value µrnd within the range

0.6 ≤ µrnd ≤ 1 (14)

is selected at the beginning of each episode. This friction value is afterwards used in the
vehicle model during a training episode.

Appl. Sci. 2023, 13, 3456 8 of 24Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 24

Figure 4. The side wheel forces ܨୱ୛೔ over the side slip angle ߙ௜ for different values of ߤ with ݅ ∈ሼf, rሽ denoting the front or rear wheels, respectively, according to Pajecka’s MF [18] in Equation
(A14).

To enable the agent to learn an equally robust and successful vehicle control strategy
for different street conditions, a uniformly sampled friction value ߤ୰୬ୢ within the range

is selected at the beginning of each episode. This friction value is afterwards used in the
vehicle model during a training episode.

4. Training Setup
In this section, the simulation framework of the training setup, including the dynam-

ics randomization process, is introduced. Furthermore, the training procedure for the
agents is presented.

4.1. Simulation Framework
The software architecture applied to train the different agents with dynamics ran-

domization is extended from our previous work in [14] and shown in Figure 5.
Here, the reinforcement learning environment for the PFC problem is implemented

using the Python-based OpenAI Gym framework [20]. This framework offers a standard-
ized interface with several reinforcement learning libraries, such as the Stable-Baselines 2
library [21], used in this work. The vehicle model is written in Python as a system of ordi-
nary differential equations (ODEs) and solved by the odeint-function from the Scipy li-
brary [22]. Furthermore, time independent path interpolation (TIPI) [12,23] is applied to
determine the closest point on the reference path for each time step, which is then used by
the agent to learn how to steer the vehicle towards the path. The implementation details
of the TIPI are shown in Appendix A. The TIPI is implemented in Modelica [24] and ex-
ported by Dymola as a Functional Mock-up Unit (FMU) [25], which contains the compiled
code of the TIPI algorithm. This FMU is then incorporated into the Python-based rein-
forcement learning framework.

side slip angle ݅ߙ

sid
e

w
he

el
 fo

rc
e

ܨ sW ݅

0.6 ≤ ୰୬ୢߤ ≤ 1 (14)

Figure 4. The side wheel forces FWi
s over the side slip angle αi for different values of µ with i ∈ {f, r}

denoting the front or rear wheels, respectively, according to Pajecka’s MF [18] in Equation (A14).

4. Training Setup

In this section, the simulation framework of the training setup, including the dynamics
randomization process, is introduced. Furthermore, the training procedure for the agents
is presented.

4.1. Simulation Framework

The software architecture applied to train the different agents with dynamics random-
ization is extended from our previous work in [14] and shown in Figure 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 24

Figure 5. Training setup of the PFC task including dynamics randomization extended from [14].

4.2. Training Procedure
The agents are trained on the path depicted in Figure 6, which represents a federal

highway called “Kesselberg”, located in the German Alps, and is parameterized by the
arc length ݏ. The corresponding desired velocity profile ݒ୔୍(ݏ) is shown in Figure 7, cal-
culated by taking the path curvature and the vehicle’s acceleration limits into account [26].
This particular path is chosen for training since it consists of road sections with different
characteristics, which are beneficial for learning the RL-based PFC. In Figures 6 and 7, for
example, it can be seen that the path demands tight turns between the arc lengths ݏ =300 m and ݏ = 600 m (cf. Figure 6) with a rather slow velocity around ݒ୔୍(ݏ) = 10 m s⁄
(cf. Figure 7). On the other hand, the path section between ݏ = 900 m and ݏ = 1200 m
represents an almost straight road, where the vehicle needs to accelerate quickly to suc-
cessfully track the velocity demanded. All agents are trained for a total of 300.000 time
steps with a step size of ∆ݐ = 0.05 s, and the reward function introduced in Equation (5).
In this work, an episode consists of 300 time steps. During training, we apply the state-
of-the-art Soft Actor-Critic (SAC) [27] learning algorithm from the Stable-Baselines 2 li-
brary [21]. The SAC algorithm is briefly discussed in Appendix C. The training with the
SAC method is conducted with the hyperparameters given in Appendix D. The parame-
ters of the reward function introduced in Equation (5) are set to:

Furthermore, the weighting parameters ܿ୤ and ܿ୰ in Equation (7) are both set to 1
to equally penalize large changes in both the front and rear steering angles.

௬ࣂ = [1, 0.05], టࣂ = ൣ1, √0.005൧, ௩ࣂ = ൣ1, √0.1൧. (15)

Figure 5. Training setup of the PFC task including dynamics randomization extended from [14].

Appl. Sci. 2023, 13, 3456 9 of 24

Here, the reinforcement learning environment for the PFC problem is implemented
using the Python-based OpenAI Gym framework [20]. This framework offers a standard-
ized interface with several reinforcement learning libraries, such as the Stable-Baselines
2 library [21], used in this work. The vehicle model is written in Python as a system of
ordinary differential equations (ODEs) and solved by the odeint-function from the Scipy
library [22]. Furthermore, time independent path interpolation (TIPI) [12,23] is applied to
determine the closest point on the reference path for each time step, which is then used by
the agent to learn how to steer the vehicle towards the path. The implementation details of
the TIPI are shown in Appendix A. The TIPI is implemented in Modelica [24] and exported
by Dymola as a Functional Mock-up Unit (FMU) [25], which contains the compiled code of
the TIPI algorithm. This FMU is then incorporated into the Python-based reinforcement
learning framework.

4.2. Training Procedure

The agents are trained on the path depicted in Figure 6, which represents a federal
highway called “Kesselberg”, located in the German Alps, and is parameterized by the arc
length s. The corresponding desired velocity profile vI

P(s) is shown in Figure 7, calculated
by taking the path curvature and the vehicle’s acceleration limits into account [26]. This
particular path is chosen for training since it consists of road sections with different charac-
teristics, which are beneficial for learning the RL-based PFC. In Figures 6 and 7, for example,
it can be seen that the path demands tight turns between the arc lengths s = 300 m and
s = 600 m (cf. Figure 6) with a rather slow velocity around vI

P(s) = 10 m/s (cf. Figure 7).
On the other hand, the path section between s = 900 m and s = 1200 m represents an
almost straight road, where the vehicle needs to accelerate quickly to successfully track the
velocity demanded. All agents are trained for a total of 300.000 time steps with a step size
of ∆t = 0.05 s, and the reward function introduced in Equation (5). In this work, an episode
consists of 300 time steps. During training, we apply the state-of-the-art Soft Actor-Critic
(SAC) [27] learning algorithm from the Stable-Baselines 2 library [21]. The SAC algorithm is
briefly discussed in Appendix C. The training with the SAC method is conducted with the
hyperparameters given in Appendix D. The parameters of the reward function introduced
in Equation (5) are set to:

θy = [1, 0.05],θψ =
[
1,
√

0.005
]
, θv =

[
1,
√

0.1
]
. (15)

Furthermore, the weighting parameters cf and cr in Equation (7) are both set to 1 to
equally penalize large changes in both the front and rear steering angles.

As introduced in [14], it is beneficial to randomly initialize the system with an offset
to the path at the beginning of each training episode. This supports the exploration of
the observation space since the agents must repeatedly try to successfully follow the path
starting from different initial configurations. More specifically, the offset is applied to the
initial position error eP

y,start, the initial orientation error eψ,start, and the initial longitudinal
velocity error eP

vx ,start. At the beginning of each episode, these initial errors to the path are
randomly sampled from three different uniform distributions within the following bounds:

−0.8 m ≤ eP
y,start ≤ 0.8 m

−8.6◦ ≤ eψ,start ≤ 8.6◦

−1.0 m
s ≤ eP

v,start ≤ 1.0 m
s .

(16)

To further encourage the agents to only explore important parts of the observation
space, several training abortion criteria are introduced, as described in [14]. If one or
more of these errors do not remain within their respective pre-defined thresholds, then
the training episode is terminated early. In this work, a termination is triggered in the
following cases:

Appl. Sci. 2023, 13, 3456 10 of 24
Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 24

Figure 6. Top view of the training path (blue line), which represents a federal highway located in
the German Alps. The black dots depict different path position at certain arc lengths [14] ݏ.

Figure 7. Velocity profile ݒ୔୍(ݏ) of the training path, parameterized by the arc length [14] ݏ.

As introduced in [14], it is beneficial to randomly initialize the system with an offset
to the path at the beginning of each training episode. This supports the exploration of the
observation space since the agents must repeatedly try to successfully follow the path
starting from different initial configurations. More specifically, the offset is applied to the
initial position error ݁௬,ୱ୲ୟ୰୲୔ , the initial orientation error ݁ట,ୱ୲ୟ୰୲, and the initial longitudi-
nal velocity error ݁௩ೣ,ୱ୲ୟ୰୲୔ . At the beginning of each episode, these initial errors to the path
are randomly sampled from three different uniform distributions within the following
bounds:

position ݔ [m]

po
sit

io
n

] ݕ m]

ݏ = 0 m

300 m

600 m

900 m

1200 m

1500 m

1800 m

2100 m

2400 m

3000 m

2700 m

arc length ݏ [m]

de
sir

ed
 v

el
oc

ity
ݒ PI ((ݏ ቂm sቃ

−0.8 m ≤ ݁௬,ୱ୲ୟ୰୲୔ ≤ 0.8 m −8.6° ≤ ݁ట,ୱ୲ୟ୰୲ ≤ 8.6° −1.0 ms ≤ ݁௩,ୱ୲ୟ୰୲୔ ≤ 1.0 ms . (16)

Figure 6. Top view of the training path (blue line), which represents a federal highway located in the
German Alps. The black dots depict different path position at certain arc lengths s [14].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 24

Figure 6. Top view of the training path (blue line), which represents a federal highway located in
the German Alps. The black dots depict different path position at certain arc lengths [14] ݏ.

Figure 7. Velocity profile ݒ୔୍(ݏ) of the training path, parameterized by the arc length [14] ݏ.

As introduced in [14], it is beneficial to randomly initialize the system with an offset
to the path at the beginning of each training episode. This supports the exploration of the
observation space since the agents must repeatedly try to successfully follow the path
starting from different initial configurations. More specifically, the offset is applied to the
initial position error ݁௬,ୱ୲ୟ୰୲୔ , the initial orientation error ݁ట,ୱ୲ୟ୰୲, and the initial longitudi-
nal velocity error ݁௩ೣ,ୱ୲ୟ୰୲୔ . At the beginning of each episode, these initial errors to the path
are randomly sampled from three different uniform distributions within the following
bounds:

position ݔ [m]

po
sit

io
n

] ݕ m]

ݏ = 0 m

300 m

600 m

900 m

1200 m

1500 m

1800 m

2100 m

2400 m

3000 m

2700 m

arc length ݏ [m]

de
sir

ed
 v

el
oc

ity
ݒ PI ((ݏ ቂm sቃ

−0.8 m ≤ ݁௬,ୱ୲ୟ୰୲୔ ≤ 0.8 m −8.6° ≤ ݁ట,ୱ୲ୟ୰୲ ≤ 8.6° −1.0 ms ≤ ݁௩,ୱ୲ୟ୰୲୔ ≤ 1.0 ms . (16)

Figure 7. Velocity profile vI
P(s) of the training path, parameterized by the arc length s [14].∣∣∣eP

y

∣∣∣ > 2 m,
∣∣eψ

∣∣ > 70◦,
∣∣∣eP

vx

∣∣∣ > 5
m
s

,
∣∣∣eP

vy

∣∣∣ > 5
m
s

. (17)

Every time an episode is terminated, the negative terminal reward rT = −10 is
provoked. Therefore, the agents need to learn to stay within these error thresholds, since a
negative reward contradicts the primary reinforcement learning goal of maximizing the
expected sum of rewards, also called the return G (cf. Equation (A17) in Appendix C).
When a new episode starts, the vehicle is reinitialized where the previous episode ended,
with an initial offset according to Equation (16).

5. Tests and Performance Comparison

The agent trained with fixed nominal values (nomRL-PFC) is compared separately to
the three agents trained with dynamics randomization. The agents are compared based on
the returns they are able to achieve while facing changes in specific dynamics parameters
during several executions on the path introduced in Figure 6. The return enables the direct

Appl. Sci. 2023, 13, 3456 11 of 24

comparison of the agents with respect to the control goal, since all agents had to learn how
to maximize the same reward function during training. First, the nomRL-PFC is compared
with the agent trained with randomized mass (m-randRL-PFC), followed by a comparison
with the agent trained with randomized inertia (J-randRL-PFC). Lastly, the nomRL-PFC is
compared with the agent trained with a randomized friction coefficient (µ-randRL-PFC).

5.1. Tests and Comparison of the nomRL-PFC and the m-randRL-PFC

To evaluate the robustness and compare the performance of the nomRL-PFC and the
m-randRL-PFC, both agents are executed several times on the path in Figure 6, where
each time a different external mass mext is chosen within the interval mext ∈ [0 kg, 300 kg],
i.e., the interval on which the agent with dynamics randomization was trained. The returns
both agents obtained during these executions are shown in Figure 8. Here, the dark blue dot
represents the return of the nomRL-PFC for the external mass mext = 0 kg. The light-blue
dashed line with the crosses represents the nominal agent’s returns for executions on the
path that were aborted due to early termination (cf. Inequalities (17)). The orange line
shows the return of the m-randRL-PFC for all external masses mext.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 24

Figure 8. Return of the normRL-PFC (blue line) and ݉-randRL-PFC (orange line) after executions
on the path for different external mass values ݉ୣ୶୲.

Figure 9. The pathways of the nomRL-PFC (blue line) and the m-randRL-PFC (orange line) for ݉ୣ୶୲ = 300 kg. The reference path is depicted by the dashed black line, whereas the road boundaries
are represented by the solid black lines.

Table 1 shows the root mean square error (RMS) of the lateral position, velocity, and
orientation errors ݁௬୔, ݁௩୔ೣ , and ݁ట୔ of the nomRL-PFC and the ݉ -randRL-PFC during their
execution along the entire path with ∆݇ = 0.05 s. More specifically, we consider the cases ݉ୣ୶୲ = 0 kg and ݉ୣ୶୲ = 300 kg, which represent both ends of the randomization interval.
The errors of the nomRL-PFC are not provided for ݉ୣ୶୲ = 300 kg since the agent on the
path failed to completely execute due to the early termination criteria described above.
For ݉ୣ୶୲ = 0 kg, the lateral position error ݁௬୔-RMS of the nomRL-PFC is higher than that
of the ݉-randRL-PFC. However, the nominal agent achieves a smaller RMS for both the
velocity error ݁௩୔ೣ and the orientation error ݁ట୔ . In summary, the nomRL-PFC is able to
achieve a higher overall return for ݉ୣ୶୲ = 0 kg, as shown in Figure 8, resulting from the

external mass ݉ext

re
tu

rn
 ܩ

nomRL-PFC aborted
nomRL-PFC ݉-randRL-PFC

20,000

15,000

10,000

5,000

nomRL-PFC ݉-randRL-PFC
reference path
path boundaries

position ݔ [m]

po
sit

io
n

] ݕ m]

Figure 8. Return of the normRL-PFC (blue line) and m-randRL-PFC (orange line) after executions on
the path for different external mass values mext.

In Figure 8, it can be seen that the nomRL-PFC achieves a 9% higher return than
the m-randRL-PFC for mext = 0 kg, which is the value for which the nomRL-PFC was
trained. However, the m-randRL-PFC outperforms the nominal agent for cases in which
mext ≥ 25 kg. In all cases with an additional mass, the execution of the nominal agent on
the path is aborted early because it triggers one or more of the safety-critical termination
conditions introduced in Equation (17). In the case of mext = 300 kg, for example, the
execution of the nomRL-PFC is aborted because the position error exceeds the respective
pre-defined threshold, i.e.,

∣∣∣eP
y

∣∣∣ > 2 m (cf. Inequalities (17)). This is illustrated in Figure 9.
Here, the pathway of the nominal agent is depicted in blue, while the pathway of the
m-randRL-PFC is depicted in orange. The reference path is presented by the dashed black
line. The solid black lines represent the path boundaries. It can be observed that the
nomRL-PFC starts to slightly deviate from the reference path until the agent eventually
leaves the road. However, the m-randRL-PFC continues to successfully follow the path
closely. Furthermore, for the complete interval of the values considered for mext, the returns
of the m-randRL-PFC remain at a relatively high level compared with the nomRL-PFC’s

Appl. Sci. 2023, 13, 3456 12 of 24

returns, which decrease continually. This underlines the robustness of the m-randRL-PFC
against varying mass values.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 24

Figure 8. Return of the normRL-PFC (blue line) and ݉-randRL-PFC (orange line) after executions
on the path for different external mass values ݉ୣ୶୲.

Figure 9. The pathways of the nomRL-PFC (blue line) and the m-randRL-PFC (orange line) for ݉ୣ୶୲ = 300 kg. The reference path is depicted by the dashed black line, whereas the road boundaries
are represented by the solid black lines.

Table 1 shows the root mean square error (RMS) of the lateral position, velocity, and
orientation errors ݁௬୔, ݁௩୔ೣ , and ݁ట୔ of the nomRL-PFC and the ݉ -randRL-PFC during their
execution along the entire path with ∆݇ = 0.05 s. More specifically, we consider the cases ݉ୣ୶୲ = 0 kg and ݉ୣ୶୲ = 300 kg, which represent both ends of the randomization interval.
The errors of the nomRL-PFC are not provided for ݉ୣ୶୲ = 300 kg since the agent on the
path failed to completely execute due to the early termination criteria described above.
For ݉ୣ୶୲ = 0 kg, the lateral position error ݁௬୔-RMS of the nomRL-PFC is higher than that
of the ݉-randRL-PFC. However, the nominal agent achieves a smaller RMS for both the
velocity error ݁௩୔ೣ and the orientation error ݁ట୔ . In summary, the nomRL-PFC is able to
achieve a higher overall return for ݉ୣ୶୲ = 0 kg, as shown in Figure 8, resulting from the

external mass ݉ext

re
tu

rn
 ܩ

nomRL-PFC aborted
nomRL-PFC ݉-randRL-PFC

20,000

15,000

10,000

5,000

nomRL-PFC ݉-randRL-PFC
reference path
path boundaries

position ݔ [m]

po
sit

io
n

] ݕ m]

Figure 9. The pathways of the nomRL-PFC (blue line) and the m-randRL-PFC (orange line) for
mext = 300 kg. The reference path is depicted by the dashed black line, whereas the road boundaries
are represented by the solid black lines.

Table 1 shows the root mean square error (RMS) of the lateral position, velocity, and
orientation errors eP

y , eP
vx , and eP

ψ of the nomRL-PFC and the m-randRL-PFC during their
execution along the entire path with ∆k = 0.05 s. More specifically, we consider the cases
mext = 0 kg and mext = 300 kg, which represent both ends of the randomization interval.
The errors of the nomRL-PFC are not provided for mext = 300 kg since the agent on the
path failed to completely execute due to the early termination criteria described above. For
mext = 0 kg, the lateral position error eP

y -RMS of the nomRL-PFC is higher than that of the
m-randRL-PFC. However, the nominal agent achieves a smaller RMS for both the velocity
error eP

vx and the orientation error eP
ψ. In summary, the nomRL-PFC is able to achieve a

higher overall return for mext = 0 kg, as shown in Figure 8, resulting from the lower RMS
of the velocity and orientation errors throughout the entire execution on the path. For
mext = 300 kg, the m-randRL-PFC’s returns decrease slightly compared with the case with
mext = 0 kg because the RMS of all errors increases. This is the reason the return in Figure 8
also slightly decreases with higher values of mext. Nevertheless, the m-randRL-PFC is able
to achieve a high return for all values considered for the external mass mext.

Table 1. The root mean square (RMS) errors of the nomRL-PFC and the m-randRL-PFC after executing
the agents on the path for mext = 0 kg and mext = 300 kg. The best metric for each mext value is
marked green.

External Mass mext = 0 kg mext = 300 kg

Agent nomRL-PFC m-randRL-PFC nomRL-PFC m-randRL-PFC
eP

y [m] (RMS) 0.013 0.009 - 0.013
eP

vx

[m
s
]

(RMS) 0.106 0.149 - 0.594
eP

ψ [rad] (RMS) 0.020 0.032 - 0.033

Observing the results above, we can state that the m-randRL-PFC shows robustness
against mass variations. This agent shows satisfying performances for the complete interval
of mext ∈ [0 kg, 300 kg]. The performance of the nomRL-PFC, however, decreases drastically

Appl. Sci. 2023, 13, 3456 13 of 24

when the vehicle carries an external mass. This demonstrates that the nomRL-PFC agent
is not robust against additional vehicle loads. Therefore, it fails to generalize to other
parameter values that impose different dynamic behavior on the vehicle. Here, applying
dynamics randomization to the mass during training solves this problem and enables the
m-randRL-PFC to generalize successfully.

5.2. Tests and Comparison of the nomRL-PFC and the J-randRL-PFC

To examine the robustness of the nomRL-PFC and the J-randRL-PFC against variations
in the yaw inertia, both agents are executed on the training path several times, where each
time a different value for JC

z,rnd is chosen according to the inequalities (13). The returns
of both agents are shown in Figure 10, which are evaluated at 80%, 85%, . . . , 120% of the
nominal inertia value JC

z,nom of the ROboMObil. The blue line represents the returns of the
nomRL-PFC, whereas the orange line depicts the returns of the J-randRL-PFC.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 24

lower RMS of the velocity and orientation errors throughout the entire execution on the
path. For ݉ୣ୶୲ = 300 kg, the ݉-randRL-PFC’s returns decrease slightly compared with
the case with ݉ୣ୶୲ = 0 kg because the RMS of all errors increases. This is the reason the
return in Figure 8 also slightly decreases with higher values of ݉ୣ୶୲. Nevertheless, the ݉-
randRL-PFC is able to achieve a high return for all values considered for the external mass ݉ୣ୶୲.
Table 1. The root mean square (RMS) errors of the nomRL-PFC and the ݉-randRL-PFC after exe-
cuting the agents on the path for ݉ୣ୶୲ = 0 kg and ݉ୣ୶୲ = 300 kg. The best metric for each ݉ୣ୶୲
value is marked green.

External Mass ܜܠ܍࢓ = ૙ ܜܠ܍࢓ ܏ܓ = ૜૙૙ ܏ܓ
Agent nomRL-PFC ࢓-randRL-PFC nomRL-PFC ࢓-randRL-PFC ݁௬୔ [m] (RMS) 0.013 0.009 - 0.013 ݁௩୔ೣ [m s⁄] (RMS) 0.106 0.149 - 0.594 ݁ట୔ [rad] (RMS) 0.020 0.032 - 0.033

Observing the results above, we can state that the ݉-randRL-PFC shows robustness
against mass variations. This agent shows satisfying performances for the complete inter-
val of ݉ୣ୶୲ ∈ [0 kg, 300 kg]. The performance of the nomRL-PFC, however, decreases
drastically when the vehicle carries an external mass. This demonstrates that the nomRL-
PFC agent is not robust against additional vehicle loads. Therefore, it fails to generalize to
other parameter values that impose different dynamic behavior on the vehicle. Here, ap-
plying dynamics randomization to the mass during training solves this problem and en-
ables the ݉-randRL-PFC to generalize successfully.

5.2. Tests and Comparison of the nomRL-PFC and the ܬ-randRL-PFC
To examine the robustness of the nomRL-PFC and the ܬ-randRL-PFC against varia-

tions in the yaw inertia, both agents are executed on the training path several times, where
each time a different value for ܬ௭,୰୬ୢେ is chosen according to the inequalities (13). The re-
turns of both agents are shown in Figure 10, which are evaluated at 80%, 85%, … , 120%
of the nominal inertia value ܬ௭,୬୭୫େ of the ROboMObil. The blue line represents the returns
of the nomRL-PFC, whereas the orange line depicts the returns of the ܬ-randRL-PFC.

Figure 10. Return of the nomRL-PFC (blue line) and the ܬ-randRL-PFC (orange line) for the inertia
values considered during the training of the agent with dynamics randomization.

In Figure 10, it can be observed that the returns of the nomRL-PFC and the ܬ-randRL-
PFC both stay at a relatively constant level for all considered inertia values. The reason
for this can be explained with the help of Table 2. It shows the RMS errors of the nomRL-
PFC and the ܬ-randRL-PFC for the inertia values 80% ⋅ ௭,୬୭୫େܬ ௭,୬୭୫େܬ , and 120% ⋅ ௭,୬୭୫େܬ .
The nomRL-PFC and the ܬ-randRL-PFC each provide constant RMS errors for all three
considered inertia values. Therefore, the returns of the agents do not vary notably. A

% of ܬZC

re
tu

rn
 ܩ

nomRL-PFC ܬ-randRL-PFC

22,500

22,000

21,500

21,000

Figure 10. Return of the nomRL-PFC (blue line) and the J-randRL-PFC (orange line) for the inertia
values considered during the training of the agent with dynamics randomization.

In Figure 10, it can be observed that the returns of the nomRL-PFC and the J-randRL-
PFC both stay at a relatively constant level for all considered inertia values. The reason for
this can be explained with the help of Table 2. It shows the RMS errors of the nomRL-PFC
and the J-randRL-PFC for the inertia values 80% · JC

z,nom, JC
z,nom and 120% · JC

z,nom. The
nomRL-PFC and the J-randRL-PFC each provide constant RMS errors for all three consid-
ered inertia values. Therefore, the returns of the agents do not vary notably. A possible
explanation for this might be that the inertia does not have an overall major influence on
the dynamics of the system for the considered motion control task, which is why the agents
are able to perform equally well for all considered inertia values. Furthermore, both agents
achieve similar RMS values for the position and orientation errors, with the nomRL-PFC
providing slightly higher ones for both errors. For these errors, both agents receive similar
overall rewards. Nevertheless, the nomRL-PFC is able to achieve higher overall returns in
Figure 10 mainly due to the smaller RMS for the velocity error, which is rewarded higher
due to the choice of θv,2 in Equation (15).

Table 2. The root mean square (RMS) errors of the nomRL-PFC and the J-randRL-PFC after exe-
cuting the agents on the path for different inertia values. The best metric for each inertia value is
marked green.

Agent nomRL-PFC J-randRL-PFC

% of Inertia JC
z,nom 80% 100% 120% 80% 100% 120%

eP
y [m] (RMS) 0.013 0.013 0.013 0.010 0.010 0.010

eP
vx

[m/s] (RMS) 0.106 0.106 0.106 0.144 0.144 0.144
eP

ψ [rad] (RMS) 0.020 0.020 0.020 0.013 0.014 0.014

Appl. Sci. 2023, 13, 3456 14 of 24

With these observations, it can be stated that alternating the values of the yaw inertia
does not affect the control performances of the agents. The RMS errors of both agents
remain at a constant level, which indicates their robustness against different inertia values.
More specifically, this shows that the nominal agent can still perform well even under
uncertain inertia values and that the randomization of the yaw inertia during training does
not provide any advantages.

5.3. Tests and Comparison of the nomRL-PFC and the µ-randRL-PFC

To evaluate and compare the performance of nomRL-PFC and µ-randRL-PFC for
varying friction values, the agents both control the ROboMObil over the training path from
start to finish multiple times, where each time a different tire-road friction coefficient µ is
chosen. The performance of the agents is analyzed for friction values from the interval on
which the µ-randRL-PFC was trained; see Equation (14). The returns of both the nomRL-
PFC and the µ-randRL-PFC are shown in Figure 11 for several different friction values.
The blue line represents the return of the nomRL-PFC, whereas the orange line depicts the
return of the µ-randRL-PFC. It can be seen that the nomRLPFC is able to obtain a higher
return for friction values close to µ = 1.0, which is the friction value for which it was
trained. However, for µ ≤ 0.925, the nominal agent is outperformed by the µ-randRL-PFC.
Furthermore, the return of the nominal agent decreases significantly for smaller friction
values, whereas the return of the agent trained with friction randomization is able to keep
the return at a high level for all considered values of µ, showing robust behavior on varying
road conditions.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 24

Equation (5), which is multiplied with the remainder of the reward function as part of the
hierarchical design of the reward function. With increasing lateral position errors ݁௬୔, the
value of the function ݃ࣂ೤൫݁௬୔൯ decreases. Consequently, this leads to a smaller overall re-
turn during the execution on the path. The ߤ-randRL-PFC, on the other hand, is able to
obtain a similar ݁௬୔-RMS for both road conditions (cf. Table 3), which further underlines
its robustness against different friction values.

Figure 11. Return of the nomRL-PFC (blue line) and ߤ-randRL-PFC (orange line) for the friction
values considered during the training of the agent with dynamics randomization

Figure 12. Pathways of the nomRL-PFC (blue lines) and the ߤ-randRL-PFC (orange line) on the road
section around the arc length ݏ = 493 m with the friction value ߤ = 0.6. The reference path is rep-
resented by the black dashed line, whereas the path boundaries are depicted by the black solid lines.

nomRL-PFCߤ-randRL-PFC

friction ߤ

re
tu

rn
 ܩ

21,000

20,000

19,000

18,000

nomRL-PFC ߤ-randRL-PFC
reference path
path boundaries

position ݔ [m]

po
sit

io
n

] ݕ m]

Figure 11. Return of the nomRL-PFC (blue line) and µ-randRL-PFC (orange line) for the friction
values considered during the training of the agent with dynamics randomization.

Table 3 summarizes the RMS errors of the nomRL-PFC and the µ-randRL-PFC on
the path for the friction values µ = 0.6 and µ = 1.0. It can be stated that both agents
achieve a similar RMS for the lateral position error eP

y on a dry road surface, i.e., µ = 1.0,
with the nomRL-PFC providing lower errors for both velocity and orientation tracking.
In the case of a snowy road with µ = 0.6, however, the path-following performance of
the nomRL-PFC declines, which increases its RMS for eP

y throughout the path. This is
illustrated in Figure 12, which shows the road section around the arc length s = 493 m
for µ = 0.6, with the blue line depicting the pathway of the nomRL-PFC and the orange
one illustrating the pathway of the µ-randRL-PFC. It can be observed that both agents are
able to successfully follow the reference path, while the µ-randRL-PFC is able to achieve

Appl. Sci. 2023, 13, 3456 15 of 24

smaller lateral position errors to the reference path. This is the main reason why the overall
return of the nomRL-PFC also decreases in Figure 11 for small friction values. The lateral
position error eP

y determines the value of the Gaussian-like function gθy

(
eP

y

)
in Equation

(5), which is multiplied with the remainder of the reward function as part of the hierarchical
design of the reward function. With increasing lateral position errors eP

y , the value of the

function gθy

(
eP

y

)
decreases. Consequently, this leads to a smaller overall return during the

execution on the path. The µ-randRL-PFC, on the other hand, is able to obtain a similar
eP

y -RMS for both road conditions (cf. Table 3), which further underlines its robustness
against different friction values.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 24

Equation (5), which is multiplied with the remainder of the reward function as part of the
hierarchical design of the reward function. With increasing lateral position errors ݁௬୔, the
value of the function ݃ࣂ೤൫݁௬୔൯ decreases. Consequently, this leads to a smaller overall re-
turn during the execution on the path. The ߤ-randRL-PFC, on the other hand, is able to
obtain a similar ݁௬୔-RMS for both road conditions (cf. Table 3), which further underlines
its robustness against different friction values.

Figure 11. Return of the nomRL-PFC (blue line) and ߤ-randRL-PFC (orange line) for the friction
values considered during the training of the agent with dynamics randomization

Figure 12. Pathways of the nomRL-PFC (blue lines) and the ߤ-randRL-PFC (orange line) on the road
section around the arc length ݏ = 493 m with the friction value ߤ = 0.6. The reference path is rep-
resented by the black dashed line, whereas the path boundaries are depicted by the black solid lines.

nomRL-PFCߤ-randRL-PFC

friction ߤ
re

tu
rn

 ܩ

21,000

20,000

19,000

18,000

nomRL-PFC ߤ-randRL-PFC
reference path
path boundaries

position ݔ [m]

po
sit

io
n

] ݕ m]

Figure 12. Pathways of the nomRL-PFC (blue lines) and the µ-randRL-PFC (orange line) on the
road section around the arc length s = 493 m with the friction value µ = 0.6. The reference path
is represented by the black dashed line, whereas the path boundaries are depicted by the black
solid lines.

Table 3. The RMS errors of nomRL-PFC and µ-randRL-PFC during the evaluation on the training
path for the friction values µ = 0.6 and µ = 1.0. The best metric is highlighted green.

Friction Value µ = 0.6 µ = 1.0

Agent nomRL-PFC µ-randRL-PFC nomRL-PFC µ-randRL-PFC
eP

y [m] (RMS) 0.033 0.011 0.013 0.013
eP

vx
[m/s] (RMS) 0.114 0.171 0.106 0.150

eP
ψ [rad] (RMS) 0.022 0.020 0.020 0.022

The performance comparison of the nomRL-PFC and the µ-randRL-PFC at rather
challenging road sections further demonstrates the robustness of the latter agent. The
tight road turns between the arc lengths s = 300 m and s = 600 m of the path shown
in Figure 6 represent such sections. The lateral position errors eP

y induced by executing
both agents in this particular part of the path are shown in Figure 13 for the friction value
µ = 1.0, with the blue line representing the nomRL-PFC and the orange line representing
the µ-randRL-PFC. Here, it can be seen that both agents achieve a reasonable performance
with the nomRL-PFC offering a slightly better one since it tracks the reference path more
closely with

∣∣∣eP
y

∣∣∣ < 0.024 m in this section. However, the path-following performance of the
nomRL-PFC in this part of the path decreases significantly for µ = 0.6, which can be seen
in Figure 14. Here, it can be observed that the nomRL-PFC now makes greater position
errors up to

∣∣∣eP
y

∣∣∣ ≈ 0.06 m and that it does not follow the path as closely as it did under dry

Appl. Sci. 2023, 13, 3456 16 of 24

road conditions (µ = 1.0). Furthermore, the µ-randRL-PFC offers good position tracking
performance with

∣∣∣eP
y

∣∣∣ < 0.02 m for µ = 0.6 (cf. Figure 14).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 24

Table 3. The RMS errors of nomRL-PFC and ߤ-randRL-PFC during the evaluation on the training
path for the friction values ߤ = 0.6 and ߤ = 1.0. The best metric is highlighted green.

Friction Value ࣆ = ૙. ૟ ࣆ = ૚. ૙
Agent nomRL-PFC ࣆ-randRL-PFC nomRL-PFC ࣆ-randRL-PFC ݁௬୔ [m] (RMS) 0.033 0.011 0.013 0.013 ݁௩୔ೣ [m s⁄] (RMS) 0.114 0.171 0.106 0.150 ݁ట୔ [rad] (RMS) 0.022 0.020 0.020 0.022

The performance comparison of the nomRL-PFC and the ߤ-randRL-PFC at rather
challenging road sections further demonstrates the robustness of the latter agent. The tight
road turns between the arc lengths ݏ = 300 m and ݏ = 600 m of the path shown in Fig-
ure 6 represent such sections. The lateral position errors ݁௬୔ induced by executing both
agents in this particular part of the path are shown in Figure 13 for the friction value ߤ =1.0, with the blue line representing the nomRL-PFC and the orange line representing the ߤ-randRL-PFC. Here, it can be seen that both agents achieve a reasonable performance
with the nomRL-PFC offering a slightly better one since it tracks the reference path more
closely with ห݁௬୔ห < 0.024 m in this section. However, the path-following performance of
the nomRL-PFC in this part of the path decreases significantly for ߤ = 0.6, which can be
seen in Figure 14. Here, it can be observed that the nomRL-PFC now makes greater posi-
tion errors up to ห݁௬୔ห ≈ 0.06 m and that it does not follow the path as closely as it did
under dry road conditions (ߤ = 1.0). Furthermore, the ߤ-randRL-PFC offers good posi-
tion tracking performance with ห݁௬୔ห < 0.02 m for ߤ = 0.6 (cf. Figure 14).

Furthermore, in Table 3, it can be seen that the nomRL-PFC outperforms the ߤ-
randRL-PFC in terms of tracking the demanded velocity. For both friction values, the ߤ-
randRL-PFC generates a higher RMS of ݁௩୔ೣ over the entire path. This can be explained by
the hierarchical design of the reward function. It prioritizes the minimization of the posi-
tion error before rewarding small velocity errors. This prioritization motivates the ߤ-
randRL-PFC to apply a rather conservative velocity tracking performance for all friction
values as a trade-off for good position tracking. Therefore, the agent trained with friction
randomization applies a slower velocity for the different friction values in order to track
the position more successfully for any given friction value ߤ ∈ [0.6, 1.0].

Figure 13. The position error ݁௬୔ of the nomRL-PFC (blue line) and the ߤ-randRL-PFC (orange line)
on the road section between the arc lengths ݏ = 300 and ݏ = 600 for the friction value ߤ = 1.0.

arc length ݏ [m]

la
te

ra
l p

os
iti

on
 e

rr
or

 ݁ Pݕ [m]
nomRL-PFC ߤ-randRL-PFC

ߤ = 1.0

Figure 13. The position error eP
y of the nomRL-PFC (blue line) and the µ-randRL-PFC (orange line)

on the road section between the arc lengths s = 300 and s = 600 for the friction value µ = 1.0.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 24

Figure 14. The position error ݁௬୔ of the nomRL-PFC (blue line) and the ߤ-randRL-PFC (orange line)
on the road section between the arc lengths ݏ = 300 and ݏ = 600 for the friction value ߤ = 0.6.

It can be stated that the randomization of the road-tire friction during training in-
creases the robustness of the agent. The performance of the ߤ-randRL-PFC stays at a high
level, whereas the performance of the nomRL-PFC steadily decreases for smaller ߤ.

6. Conclusions and Outlook
In this work, the reinforcement learning-based path-following control of the RO-

boMObil has been extended such that dynamics randomization can be applied during
training, which enables the learning of robust agents. More specifically, the dynamics ran-
domization method was applied to three different dynamics parameters of the ROboMO-
bil, namely the vehicle mass, the yaw inertia, and the tire-road friction coefficient. In the
case of mass randomization, the agent trained with uniformly distributed mass values
showed superior performance for the entire range of additional loads, which underlines
its robustness against variations in this particular vehicle parameter. In contrast, the nom-
inal agent failed to complete the path-following control task with an additional vehicle
load, which further displays the increased robustness of the former agent. Furthermore,
the agent trained with randomized friction values performed impressively over all con-
sidered friction values, whereas the performance of the nominal agent declines continu-
ally under more slippery road conditions. This shows that randomizing the friction during
training enables robust control performance for various road conditions. However, the
nominal agent showed robustness against uncertainties in the yaw inertia, which reveals
that the randomization of the inertia does not provide additional benefits. In summary,
the results allow the conclusion that dynamics randomization for certain parameters that
have a major impact on the vehicle dynamics, such as the mass and the friction, signifi-
cantly increases the agents’ robustness against parametric uncertainties. In future work,
an agent for the considered path-following control problem should be trained that expe-
riences randomization in multiple parameters simultaneously. Furthermore, the perfor-
mance of the agents should be validated experimentally in a real-world setup. However,
appropriate safety measures need to be guaranteed first to ensure the safety of the system
and the environment.

Author Contributions: Conceptualization, K.A., J.U., C.W. and J.B.; methodology, K.A.; software,
K.A. and J.U.; validation, K.A., J.U., C.W. and J.B.; writing—original draft preparation, K.A.;

la
te

ra
l p

os
iti

on
 e

rr
or

 ݁ Pݕ [m]

arc length ݏ [m]

nomRL-PFC ߤ-randRL-PFC

ߤ = 0.6

Figure 14. The position error eP
y of the nomRL-PFC (blue line) and the µ-randRL-PFC (orange line)

on the road section between the arc lengths s = 300 and s = 600 for the friction value µ = 0.6.

Furthermore, in Table 3, it can be seen that the nomRL-PFC outperforms the µ-randRL-
PFC in terms of tracking the demanded velocity. For both friction values, the µ-randRL-PFC
generates a higher RMS of eP

vx over the entire path. This can be explained by the hierarchical
design of the reward function. It prioritizes the minimization of the position error before
rewarding small velocity errors. This prioritization motivates the µ-randRL-PFC to apply
a rather conservative velocity tracking performance for all friction values as a trade-off
for good position tracking. Therefore, the agent trained with friction randomization
applies a slower velocity for the different friction values in order to track the position more
successfully for any given friction value µ ∈ [0.6, 1.0].

Appl. Sci. 2023, 13, 3456 17 of 24

It can be stated that the randomization of the road-tire friction during training increases
the robustness of the agent. The performance of the µ-randRL-PFC stays at a high level,
whereas the performance of the nomRL-PFC steadily decreases for smaller µ.

6. Conclusions and Outlook

In this work, the reinforcement learning-based path-following control of the ROboMO-
bil has been extended such that dynamics randomization can be applied during training,
which enables the learning of robust agents. More specifically, the dynamics randomization
method was applied to three different dynamics parameters of the ROboMObil, namely
the vehicle mass, the yaw inertia, and the tire-road friction coefficient. In the case of mass
randomization, the agent trained with uniformly distributed mass values showed supe-
rior performance for the entire range of additional loads, which underlines its robustness
against variations in this particular vehicle parameter. In contrast, the nominal agent failed
to complete the path-following control task with an additional vehicle load, which further
displays the increased robustness of the former agent. Furthermore, the agent trained with
randomized friction values performed impressively over all considered friction values,
whereas the performance of the nominal agent declines continually under more slippery
road conditions. This shows that randomizing the friction during training enables robust
control performance for various road conditions. However, the nominal agent showed
robustness against uncertainties in the yaw inertia, which reveals that the randomization
of the inertia does not provide additional benefits. In summary, the results allow the
conclusion that dynamics randomization for certain parameters that have a major impact
on the vehicle dynamics, such as the mass and the friction, significantly increases the agents’
robustness against parametric uncertainties. In future work, an agent for the considered
path-following control problem should be trained that experiences randomization in mul-
tiple parameters simultaneously. Furthermore, the performance of the agents should be
validated experimentally in a real-world setup. However, appropriate safety measures
need to be guaranteed first to ensure the safety of the system and the environment.

Author Contributions: Conceptualization, K.A., J.U., C.W. and J.B.; methodology, K.A.; software, K.A.
and J.U.; validation, K.A., J.U., C.W. and J.B.; writing—original draft preparation, K.A.; writing—review
and editing, K.A., J.U., C.W. and J.B.; visualization, K.A.; supervision, J.B., C.W. and J.U. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors received DLR basic funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors’ thanks go to Andreas Pfeiffer for his valuable support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Path Representation

This section and the path following control problem considered in this work are based
on [12,23]. The vehicle should robustly follow a path which is characterized by a motion
demand λ(s) and parameterized by the arc length s and is defined by

λ(s) =
(

xI
P(s), yI

P(s), ψP(s), κP(s), vP
P,x(s)

)
(A1)

The superscripts I and P denote that the individual values are considered in the
inertial and path reference frame, respectively. Furthermore, the subscript P expresses
that the respective value describes a property of the path. Figure A1 shows a graphi-
cal depiction of λ(s) and the values introduced in Equation (A1) at the point si. Here,
pI

P(si) =
[
xI

P(si), yI
P(si)

]
denotes the path reference point in the inertial coordinate system

and ψP(si) represents the path orientation. Furthermore, κP(si) expresses the path curva-
ture and vP

P,x(si) depicts the longitudinal velocity tangential to the path in the direction of
the tangent vector tP at the path reference point pI

P(si).

Appl. Sci. 2023, 13, 3456 18 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 24

writing—review and editing, K.A., J.U., C.W. and J.B.; visualization, K.A.; supervision, J.B., C.W.
and J.U. All authors have read and agreed to the published version of the manuscript.

Funding: The authors received DLR basic funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors’ thanks go to Andreas Pfeiffer for his valuable support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Path Representation
This section and the path following control problem considered in this work are

based on [12,23]. The vehicle should robustly follow a path which is characterized by a
motion demand (ݏ)ࣅ and parameterized by the arc length ݏ and is defined by (ݏ)ࣅ = ቀݔ୔୍(ݏ), ,(ݏ)୔୍ݕ ߰୔(ݏ), ,(ݏ)୔ߢ ୔,௫୔ݒ ቁ. (A1)(ݏ)

The superscripts I and P denote that the individual values are considered in the in-
ertial and path reference frame, respectively. Furthermore, the subscript P expresses that
the respective value describes a property of the path. Figure A1 shows a graphical depic-
tion of (ݏ)ࣅ and the values introduced in Equation (A1) at the point ݏ௜. Here, ࢖୔୍(ݏ௜) ,(௜ݏ)୔୍ݔൣ= expresses the path curvature (௜ݏ)୔ߢ ,represents the path orientation. Furthermore (௜ݏ)൧ denotes the path reference point in the inertial coordinate system and ߰୔(௜ݏ)୔୍ݕ
and ݒ୔,௫୔ depicts the longitudinal velocity tangential to the path in the direction of the (௜ݏ)
tangent vector ࢚୔ at the path reference point ࢖୔୍(ݏ௜).

Figure A1. Graphical interpretation of the path (ݏ)ࣅ at the point ݏ௜ in the inertial coordinate sys-
tem adapted from [12].

Given the current vehicle position ࢖େ୍ = ,େ୍ݔൣ େ୍൧, the closest point on the referenceݕ
path ࢖୔୍(ݏ∗) is chosen as reference point on the path [23]. The subscript C represents that
properties of the car are regarded. This reference point then provides the current motion
demand (∗ݏ)ࣅ which the vehicle should follow. The reference point is calculated by find-
ing the arc length ݏ∗ which minimizes the distance (ݏ)ࢋ between the vehicle position ࢖େ୍
and the reference path ࢖୔୍(ݏ), i.e., (ݏ)ࢋ = (ݏ)୔୍࢖ -େ୍. This optimization problem is de࢖ −
noted by ݏ∗ = arg min௦ ଶ‖(ݏ)ࢋ‖ = arg min௦ ฮ࢖୔୍(ݏ) − େ୍ฮଶ. (A2)࢖

Figure A2 illustrates this optimization problem. It can be seen that the optimal solu-
tion is the arc length ݏ∗ for which the longitudinal position error of the vehicle is zero
after transforming it into the path frame centered at ࢖୔୍(ݏ∗), i.e., ݁௫୔(ݏ∗) = 0. In order to
obtain ݏ∗ through the minimization problem in Equation (A2), the time independent path
interpolation (TIPI) [12,23] is applied.

PI࢖ (݅ݏ) = PIݔൣ ,(݅ݏ) PIݕ ൧(݅ݏ)

߰P (݅ݏ)

(݅ݏ)Pߢ1

Pݔ,Pݒ P࢔ (݅ݏ) P࢚

 Iݔ
 Iݕ

PI࢖ (ݏ)

Figure A1. Graphical interpretation of the path λ(s) at the point si in the inertial coordinate system
adapted from [12].

Given the current vehicle position pI
C =

[
xI

C, yI
C
]
, the closest point on the reference

path pI
P(s
∗) is chosen as reference point on the path [23]. The subscript C represents that

properties of the car are regarded. This reference point then provides the current motion
demand λ(s∗) which the vehicle should follow. The reference point is calculated by finding
the arc length s∗ which minimizes the distance e(s) between the vehicle position pI

C and
the reference path pI

P(s), i.e., e(s) = pI
P(s)− pI

C. This optimization problem is denoted by

s∗ = arg min
s
||e(s)||2 = arg min

s
||pI

P(s)− pI
C||2. (A2)

Figure A2 illustrates this optimization problem. It can be seen that the optimal
solution is the arc length s∗ for which the longitudinal position error of the vehicle is zero
after transforming it into the path frame centered at pI

P(s
∗), i.e., eP

x (s∗) = 0. In order to
obtain s∗ through the minimization problem in Equation (A2), the time independent path
interpolation (TIPI) [12,23] is applied.

To allow for a successful path following control according to [14], the controller needs to
minimize certain errors between the vehicle and the path, more specifically the lateral offset
eP

y , the velocity error eP
vx in longitudinal direction of the path and the orientation error eψ.

The lateral offset of the vehicle with respect to the path is denoted by

eP
y = yP

P − yP
C, (A3)

with yP
P being the desired lateral position and yP

C being the lateral position of the car, both
referenced in the path frame. Since no lateral offset of the vehicle is desired, the desired
lateral position is set to zero in Equation (A3), i.e., yP

P = 0.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 24

To allow for a successful path following control according to [14], the controller needs
to minimize certain errors between the vehicle and the path, more specifically the lateral
offset ݁௬୔, the velocity error ݁௩୔ೣ in longitudinal direction of the path and the orientation
error ݁ట.

The lateral offset of the vehicle with respect to the path is denoted by

with ݕ୔୔ being the desired lateral position and ݕେ୔ being the lateral position of the car,
both referenced in the path frame. Since no lateral offset of the vehicle is desired, the de-
sired lateral position is set to zero in Equation (A3), i.e., ݕ୔୔ = 0.

Figure A2. Graphical representation of finding the optimal arc length ݏ∗ adapted from [12].

Furthermore, ݁௩୔ೣ denotes the velocity error between the desired velocity ݒ୔,௫୔ (ݏ)
tangential to the path and the longitudinal velocity ݒେ,௫୔ of the car in the path frame. The
velocity error is represented by

The orientation error ݁ట denotes the difference between the orientation of the path ߰୔ and the orientation of the vehicle ߰େ. The orientation error is calculated by

Lastly, the error ݁௩೤୔ represents the velocity error between the desired lateral velocity ݒ୔,௬୔ (ݏ) = 0 and the lateral velocity ݒେ,௬୔ of the vehicle in the path frame. This error is ob-
served as part of the observation vector (cf. Equation (1)). Note that ݁௩೤୔ is not actively
minimized as part of the reward function introduced in Equation (5). The error ݁௩೤୔ is cal-
culated by

Appendix B. Vehicle Dynamics of the ROboMObil
Ideally, reinforcement learning is conducted on the real-world system to avoid the

reality gap between the simulation setup and the real world. Often, however, training on
the real-world system might raise major safety concerns since in safety-critical applica-
tions, such as autonomous driving, the system or surrounding humans can be endan-
gered. Therefore, simulation-based reinforcement learning is preferred. For this, a training
model needs to be provided that represents the behavior of the system. In this work,
agents are trained to control the ROboMObil [12], which is a robotic research vehicle at

݁௬୔ = ୔୔ݕ − େ୔, (A3)ݕ

݁௩୔ೣ = ୔,௫୔ݒ (ݏ) − େ,௫୔ݒ . (A4)

݁ట = ߰୔ − ߰େ. (A5)

݁௩೤୔ = ୔,௬୔ݒ (ݏ) − େ,௬୔ݒ = 0 − େ,௬୔ݒ . (A6)

Figure A2. Graphical representation of finding the optimal arc length s∗ adapted from [12].

Appl. Sci. 2023, 13, 3456 19 of 24

Furthermore, eP
vx denotes the velocity error between the desired velocity vP

P,x(s) tan-
gential to the path and the longitudinal velocity vP

C,x of the car in the path frame. The
velocity error is represented by

eP
vx = vP

P,x(s)− vP
C,x. (A4)

The orientation error eψ denotes the difference between the orientation of the path ψP
and the orientation of the vehicle ψC. The orientation error is calculated by

eψ = ψP − ψC (A5)

Lastly, the error eP
vy represents the velocity error between the desired lateral velocity

vP
P,y(s) = 0 and the lateral velocity vP

C,y of the vehicle in the path frame. This error is
observed as part of the observation vector (cf. Equation (1)). Note that eP

vy is not actively
minimized as part of the reward function introduced in Equation (5). The error eP

vy is
calculated by

eP
vy = vP

P,y(s)− vP
C,y = 0− vP

C,y. (A6)

Appendix B. Vehicle Dynamics of the ROboMObil

Ideally, reinforcement learning is conducted on the real-world system to avoid the
reality gap between the simulation setup and the real world. Often, however, training on
the real-world system might raise major safety concerns since in safety-critical applications,
such as autonomous driving, the system or surrounding humans can be endangered.
Therefore, simulation-based reinforcement learning is preferred. For this, a training model
needs to be provided that represents the behavior of the system. In this work, agents are
trained to control the ROboMObil [12], which is a robotic research vehicle at the German
Aerospace Center (DLR). Since certain dynamics parameters of the learning model are
actively changed during the training processes, the vehicle model is introduced in detail.
This section closely follows the work in [12]. The interested reader is pointed to the
aforementioned publication for more detail.

The vehicle configuration of the extended nonlinear single-track model of the RObo-
MObil is shown in Figure A3. The state vector of the model x is given by

x =

[
βC

C, vC
C,

.
ψ

C
C, ψI

C, xI
C, yI

C

]T
(A7)

with βC
C being the vehicle side slip angle, vC

C the absolute value of the velocity vector and
.
ψ

C
C the yaw rate of the vehicle in the car coordinate system. Furthermore, ψI

C represents
the yaw angle and xI

C and yI
C denote the position of the ROboMObil in a fixed inertial

coordinate system. The control input vector of the model is set to

u = [τf, τr, ηf, ηr]
T (A8)

where τf and τr denote the torque set-points to the front and rear in-wheel motors. Fur-
thermore, ηf and ηr denote the steering rates for the front and rear vehicles axles. The
differential equations of the vehicle states and the steering angles δf and δr are provided by

Appl. Sci. 2023, 13, 3456 20 of 24

dβC
C

dt =
− sin(βC

C)FC
x +cos(βC

C)FC
y

mvC
mod

−
.
ψ

C
C

dvC
C

dt =
cos(βC

C)FC
x +sin(βC

C)FC
y

m

d
.
ψ

C
C

dt = MC
z

JC
z

dψI
C

dt =
.
ψ

C
C

dxI
C

dt = vC
C cos

(
ψI

C + βC
C
)

dyI
C

dt = vC
C sin

(
ψI

C + βC
C
)

dδf
dt = ηf

dδr
dt = ηr

(A9)

where m denotes the vehicle mass and JC
z the yaw inertia. Here, it should be noted that

both parameters, namely the mass m and the yaw inertia JC
z , are being randomized during

the reinforcement learning training process. In the first line of Equation (A9), the modified
velocity vC

mod [12] is defined as:

vC
mod =

√
vC

CvC
C + 4vminvmin + vC

C

2
. (A10)

This prevents division by zero if the velocity of the vehicle becomes zero. It should be
noted that vC

mod ≈ vC
C for vC

C � vmin. By choosing a small vmin the vehicle dynamics is only
altered insignificantly by introducing vC

mod as defined in Equation (A10).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 24

Figure A3. Vehicle configuration of the ROboMObil as introduced in [12].

The forces ܨ௫େ and ܨ௬େ in Equation (A9) denote the forces on the vehicle’s center of
gravity (CoG) and are determined by

with the longitudinal wheel forces ܨ୪୛౜ and ܨ୪୛౨ and the lateral wheel forces ܨୱ୛౜ and ܨୱ୛౨ of the front and rear wheel, respectively. Furthermore, ܨ୅୧୰ೣ஼ and ܨ୅୧୰೤஼ denote the
external longitudinal and lateral air drag forces.

The longitudinal wheel forces ܨ୪୛౜ and ܨ୪୛౨ are calculated by

where ܴ denotes the wheel radius, ݃ the gravity and ୰݂,௩ the speed dependent rolling
resistance. The latter is given by

with the rolling resistance parameters ݂ୖ ଴, ݂ୖ ଵ and ݂ୖ ସ.
The lateral wheel forces ܨୱ୛౜ and ܨୱ୛౨ are based on Pacejka’s Magic Formula (MF)

[19] and are calculated by

with ܦ ,ܥ ,ܤ and ܧ being the parameters of Pacejka’s MF, ߤ the friction coefficient be-
tween the tires and the street, and ܨ௭୤ and ܨ௭୰ the load on the front and rear axles, respec-
tively. Note that the friction coefficient ߤ is being randomized during training. The side
slip angles in Equation (A14) of the front and rear wheels are given by

The yaw moment ܯ୸େ around the center of gravity in Equation (A9) is calculated by

௫େܨ = − sin(ߜ୤) ୱ୛౜ܨ − sin(ߜ୰) ୱ୛౨ܨ + cos(ߜ୤)ܨ୪୛౜ + cos(ߜ୰) ୪୛౨ܨ − ୅୧୰ೣ஼ܨ ௬େܨ = cos൫ߜ୤൯ܨୱ୛౜ + cos(ߜ୰) ୱ୛౨ܨ + sin൫ߜ୤൯ ୪୛౜ܨ + sin(ߜ୰) ୪୛౨ܨ − ୅୧୰೤஼ܨ
(A11)

୪୛౜ܨ = 2 ߬୤ܴ − ୰݂,௩ ൬ ݈݉୰݈݃୤ + ݈୰൰
୪୛౨ܨ = 2 ߬୰ܴ − ୰݂,௩ ൬ ݈݉୤݈݃୤ + ݈୰൰

(A12)

୰݂,௩ = ݂ୖ ଴ + ݂ୖ ଵݒ୫୭ୢେ100 + ݂ୖ ସ ቆݒ୫୭ୢେ100 ቇସ. (A13)

ୱ୛౜ܨ = ܦ୸୤ܨߤ sin൫ܥ atan൫ߙܤ୛౜ − ୛౜ߙܤ)ܧ − atan(ߙܤ୛౜))൯൯ ܨୱ୛౨ = ܦ୸୰ܨߤ sin൫ܥ atan൫ߙܤ୛౨ − ୛౨ߙܤ)ܧ − atan(ߙܤ୛౨))൯൯, (A14)

୛౜ߙ = (୤ߜ) − atan ቆݒ୫୭ୢେ sin൫ߚେେ൯ + ݈୤ ሶ߰ େେݒ୫୭ୢେ cos൫ߚେେ൯ ቇ,
୛౨ߙ = (୰ߜ) − atan ቆݒ୫୭ୢେ sin൫ߚେେ൯ + ݈୰ ሶ߰ େେݒ୫୭ୢେ cos൫ߚେେ൯ ቇ . (A15)

Figure A3. Vehicle configuration of the ROboMObil as introduced in [12].

The forces FC
x and FC

y in Equation (A9) denote the forces on the vehicle’s center of
gravity (CoG) and are determined by

FC
x = − sin(δf)FWf

s − sin(δr)FWr
s + cos(δf)FWf

l + cos(δr)FWr
l − FC

Airx

FC
y = cos

(
δf)FWf

s + cos(δr)FWr
s + sin

(
δf)FWf

l + sin(δr)FWr
l − FC

Airy

(A11)

with the longitudinal wheel forces FWf
l and FWr

l and the lateral wheel forces FWf
s and FWr

s

of the front and rear wheel, respectively. Furthermore, FC
Airx

and FC
Airy

denote the external
longitudinal and lateral air drag forces.

Appl. Sci. 2023, 13, 3456 21 of 24

The longitudinal wheel forces FWf
l and FWr

l are calculated by

FWf
l = 2 τf

R − fr,v

(
mlrg
lf+lr

)
FWr

l = 2 τr
R − fr,v

(
mlfg
lf+lr

) (A12)

where R denotes the wheel radius, g the gravity and fr,v the speed dependent rolling
resistance. The latter is given by

fr,v = fR0 +
fR1vC

mod
100

+ fR4

(
vC

mod
100

)4

. (A13)

with the rolling resistance parameters fR0, fR1 and fR4.
The lateral wheel forces FWf

s and FWr
s are based on Pacejka’s Magic Formula (MF) [19]

and are calculated by

FWf
s = µFf

zD sin
(
Catan

(
BαWf − E

(
BαWf − atan

(
BαWf

))))
FWr

s = µFr
z D sin

(
Catan

(
BαWr − E

(
BαWr − atan

(
BαWr

))))
,

(A14)

with B, C, D and E being the parameters of Pacejka’s MF, µ the friction coefficient between
the tires and the street, and Ff

z and Fr
z the load on the front and rear axles, respectively. Note

that the friction coefficient µ is being randomized during training. The side slip angles in
Equation (A14) of the front and rear wheels are given by

αWf = (δf)− atan

(
vC

mod sin(βC
C)+lf

.
ψ

C
C

vC
mod cos(βC

C)

)
,

αWr = (δr)− atan

(
vC

mod sin(βC
C)+lr

.
ψ

C
C

vC
mod cos(βC

C)

)
.

(A15)

The yaw moment MC
z around the center of gravity in Equation (A9) is calculated by

MC
z = lf cos(δf)FWf

s − lr cos(δr)FWr
s + lf sin(δf)FWf

l

−lr sin(δr)FWr
l + eCoGFAiry

(A16)

with lf and lr representing the distances from the vehicle’s CoG to the front and rear axles,
respectively. Furthermore, eCoG denotes the distance in front of the CoG at which the lateral
air drag force FAiry is induced. For more details on the vehicle model, the interested reader
is referred to [12].

Appendix C. Deep Reinforcement Learning Fundamentals

In reinforcement learning, Markov Decision Processes (MDPs) are utilized to rep-
resent the controlled environment with a set of states s ∈ S and a set of actions a ∈ A
(cf. [27,28]). The state transition probability p : S × S ×A → [0, ∞) determines the like-
lihood of observing the state sk+1 in the next time step k + 1 after applying the action
ak in the state sk at time step k. After every state transition, a reward rk+1 = r(sk, ak) is
observed. This setup describes the so-called agent-environment interaction and is shown
in Figure A4. During this interaction, the agent learns to find an optimal stochastic control
policy π∗(ak|sk) which maximizes the expected discounted sum of rewards, also called
the return G, represented by

G = ∑
k
E(sk ,ak)∼ρπ

[r(sk, ak)], (A17)

Appl. Sci. 2023, 13, 3456 22 of 24

with E[·] denoting the expected value and ρπ representing the state-action marginal of the
trajectory distribution caused by the stochastic policy π(ak|sk) [27]. During training, the
agent should prefer (exploit) actions that have generated high rewards in the past but also
try (explore) new actions that might potentially generate higher rewards. Once the training
procedure is completed, a deterministic policy is retrieved by applying the expected value
of the stochastic policy in every state sk.

Recently, several methods have been proposed that solve reinforcement learning
tasks by applying artificial neural networks. In this work, we utilize the Soft-Actor-Critic
(SAC) [27] algorithm which addresses the maximum entropy learning objective [29] and
aims at finding an optimal policy π∗ by solving

π∗ = arg max
π

T

∑
k=0

Eπ [r(sk, ak) + αH(π(·|sk))] (A18)

with α denoting the temperature parameter and H(·) the entropy of the policy. This
objective in Equation (A18), compared with the standard reinforcement learning objective
introduced in Equation (A17), initiates the maximization of the entropy in each state, where
the entropy is viewed as a measure of randomness. Inherently, the policy is encouraged
to apply an increased amount of exploration during the training process. It should be
noted that the standard reinforcement learning objective can be restored by setting the
temperature parameter α to zero.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 24

with ݈୤ and ݈୰ representing the distances from the vehicle’s CoG to the front and rear
axles, respectively. Furthermore, ݁େ୭ୋ denotes the distance in front of the CoG at which
the lateral air drag force ܨ୅୧୰೤ is induced. For more details on the vehicle model, the in-
terested reader is referred to [12].

Appendix C. Deep Reinforcement Learning Fundamentals
In reinforcement learning, Markov Decision Processes (MDPs) are utilized to repre-

sent the controlled environment with a set of states ࢙ ∈ ࣭ and a set of actions ࢇ ∈ ࣛ (cf.
[27,28]). The state transition probability ݌: ࣭ × ࣭ × ࣛ → [0, ∞) determines the likelihood
of observing the state ࢙௞ାଵ in the next time step ݇ + 1 after applying the action ࢇ௞ in the
state ࢙௞ at time step ݇ . After every state transition, a reward ݎ௞ାଵ = ,௞࢙)ݎ (௞ࢇ is ob-
served. This setup describes the so-called agent-environment interaction and is shown in
Figure A4. During this interaction, the agent learns to find an optimal stochastic control
policy ߨ∗(ࢇ௞|࢙௞) which maximizes the expected discounted sum of rewards, also called
the return ܩ, represented by

with ॱ[∙] denoting the expected value and ߩగ representing the state-action marginal of
the trajectory distribution caused by the stochastic policy ߨ(ࢇ௞|࢙௞) [27]. During training,
the agent should prefer (exploit) actions that have generated high rewards in the past but
also try (explore) new actions that might potentially generate higher rewards. Once the
training procedure is completed, a deterministic policy is retrieved by applying the ex-
pected value of the stochastic policy in every state ࢙௞.

Recently, several methods have been proposed that solve reinforcement learning
tasks by applying artificial neural networks. In this work, we utilize the Soft-Actor-Critic
(SAC) [27] algorithm which addresses the maximum entropy learning objective [29] and
aims at finding an optimal policy ߨ∗ by solving

with ߙ denoting the temperature parameter and ℋ(∙) the entropy of the policy. This ob-
jective in Equation (A18), compared with the standard reinforcement learning objective
introduced in Equation (A17), initiates the maximization of the entropy in each state,
where the entropy is viewed as a measure of randomness. Inherently, the policy is encour-
aged to apply an increased amount of exploration during the training process. It should
be noted that the standard reinforcement learning objective can be restored by setting the
temperature parameter ߙ to zero.

Figure A4. The agent-environment interface in a reinforcement learning setting adapted from [27].

EnvironmentAgent Action ࢇ

State ࢙

Reward ݎ

୸େܯ = ݈୤ cos(ߜ୤) ௦୛౜ܨ − ݈୰ cos(ߜ୰) ୱ୛౨ܨ + ݈୤ sin(ߜ୤) ୪୛౜ −݈୰ܨ sin(ߜ୰)ܨ୪୛౨ + ݁େ୭ୋܨ୅୧୰೤
(A16)

ܩ = ෍ ॱ(࢙ೖ,ࢇೖ)~ఘഏ[࢙)ݎ௞, ௞)]௞ࢇ , (A17)

∗ߨ = arg maxగ ෍ ॱగൣ࢙)ݎ௞, (௞ࢇ + ∙)ߨℋ൫ߙ ௞)൯൧்࢙ |
௞ୀ଴ (A18)

Figure A4. The agent-environment interface in a reinforcement learning setting adapted from [27].

Appendix D. Hyperparameters of the Training Algorithm

Table A1 introduces the hyperparameters used in the SAC algorithm for the training
of the agents. The entropy coefficient of the SAC algorithm implemented in [21] is set
to ‘auto’, which applies the automatic entropy adjustment for the maximum entropy RL
objective introduced in [27]. From the Stable-Baselines 2 library, the MlpPolicy is chosen as
policy network, which consists of two layers with 64 perceptrons each [21]. As activation
function, the rectified linear unit (ReLU) is applied.

Table A1. The hyperparameters of the SAC training algorithm.

Hyperparameter Value

Discount rate γ = 0.99
Learning rate λ = 0.0004

Entropy coefficient auto
Buffer size 50, 000
Batch size 64

Policy network MlpPolicy
Policy network activation function ReLU

Appl. Sci. 2023, 13, 3456 23 of 24

References
1. Arnold, E.; Al-Jarrah, O.Y.; Dianati, M.; Fallah, S.; Oxtoby, D.; Mouzakitis, A. A Survey on 3D Object Detection Methods for

Autonomous Driving Applications. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3782–3795. [CrossRef]
2. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging

Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]
3. Krasowski, H.; Wang, X.; Althoff, M. Safe Reinforcement Learning for Autonomous Lane Changing Using Set-Based Prediction.

In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece,
20–23 September 2020. [CrossRef]

4. Wang, X.; Krasowski, H.; Althoff, M. CommonRoad-RL: A Configurable Reinforcement Learning Environment for Motion
Planning of Autonomous Vehicles. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), Indianapolis, IN, USA, 19–22 September 2021. [CrossRef]

5. Di, X.; Shi, R. A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving
policy learning. Transp. Res. Part C Emerg. Technol. 2021, 125, 103008. [CrossRef]

6. Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab, A.A.; Yogamani, S.; Perez, P. Deep Reinforcement Learning for
Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 2022, 23, 4909–4926. [CrossRef]

7. Pérez-Gil, Ó.; Barea, R.; López-Guillén, E.; Bergasa, L.M.; Gómez-Huélamo, C.; Gutiérrez, R.; Díaz-Díaz, A. Deep reinforcement
learning based control for Autonomous Vehicles in CARLA. Multimed. Tools Appl. 2022, 81, 3553–3576. [CrossRef]

8. Tan, J.; Zhang, T.; Coumans, E.; Iscen, A.; Bai, Y.; Hafner, D.; Bohez, S.; Vanhoucke, V. Sim-to-Real: Learning Agile Locomo-
tion for Quadruped Robots. In Proceedings of the Robotics: Science and Systems XIV Conference, Pennsylvania, PA, USA,
26–30 June 2018; p. 10. [CrossRef]

9. Bin Peng, X.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Sim-to-Real Transfer of Robotic Control with Dynamics Random-
ization. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018. [CrossRef]

10. Antonova, R.; Cruciani, S.; Smith, C.; Kragic, D. Reinforcement Learning for Pivoting Task. arXiv 2017, arXiv:1703.00472.
[CrossRef]

11. Osinski, B.; Jakubowski, A.; Ziecina, P.; Milos, P.; Galias, C.; Homoceanu, S.; Michalewski, H. Simulation-Based Reinforcement
Learning for Real-World Autonomous Driving. In Proceedings of the 2020 IEEE International Conference on Robotics and
Automation (ICRA), Paris, France, 31 May–31 August 2020. [CrossRef]

12. Brembeck, J. Model Based Energy Management and State Estimation for the Robotic Electric Vehicle ROboMObil. Dissertation
Thesis, Technical University of Munich, Munich, Germany, 2018.

13. Brembeck, J.; Ho, L.; Schaub, A.; Satzger, C.; Tobolar, J.; Bals, J.; Hirzinger, G. ROMO—The Robotic Electric Vehicle. In Proceedings
of the 22nd IAVSD International Symposium on Dynamics of Vehicle on Roads and Tracks, Manchester, UK, 11–14 August 2011.

14. Ultsch, J.; Brembeck, J.; De Castro, R. Learning-Based Path Following Control for an Over-Actuated Robotic Vehicle. In Autoreg
2019; VDI Verlag: Düsseldorf, Germany, 2019; pp. 25–46. [CrossRef]

15. Winter, C.; Ritzer, P.; Brembeck, J. Experimental investigation of online path planning for electric vehicles. In Proceedings of the
2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016.
[CrossRef]

16. Brembeck, J. Nonlinear Constrained Moving Horizon Estimation Applied to Vehicle Position Estimation. Sensors 2019, 19, 2276.
[CrossRef] [PubMed]

17. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Process. Mag. 2017, 34, 26–38. [CrossRef]

18. Brembeck, J.; Winter, C. Real-time capable path planning for energy management systems in future vehicle architectures.
In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium, Dearborn, MI, USA, 8–11 June 2014. [CrossRef]

19. Pacejka, H. Tire and Vehicle Dynamics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2012.
20. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,

arXiv:1606.01540.
21. Hill, A.; Raffin, A.; Ernestus, M.; Gleave, A.; Kanervisto, A.; Traore, R.; Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; et al. Stable

Baselines. Available online: https://github.com/hill-a/stable-baselines (accessed on 15 December 2022).
22. Virtanen, P.; Gommers, R.; Oliphant, T.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0 Contributors. SciPy 1.0 Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020,
17, 261–272. [CrossRef] [PubMed]

23. Ritzer, P.; Winter, C.; Brembeck, J. Advanced path following control of an overactuated robotic vehicle. In Proceedings of the 2015
IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28 June–1 July 2015. [CrossRef]

24. Modelica Association. Modelica—A Unified Object-Oriented Language for Systems Modeling. Available online: https://
modelica.org/documents/MLS.pdf (accessed on 13 January 2023).

25. Modelica Association. Functional Mock-Up Interface. Available online: https://fmi-standard.org/ (accessed on 4 January 2023).
26. Bünte, T.; Chrisofakis, E. A Driver Model for Virtual Drivetrain Endurance Testing. In Proceedings of the 8th International

Modelica Conference, Dresden, Germany, 20–22 March 2011. [CrossRef]

http://doi.org/10.1109/TITS.2019.2892405
http://doi.org/10.1109/ACCESS.2020.2983149
http://doi.org/10.1109/itsc45102.2020.9294259
http://doi.org/10.1109/itsc48978.2021.9564898
http://doi.org/10.1016/j.trc.2021.103008
http://doi.org/10.1109/TITS.2021.3054625
http://doi.org/10.1007/s11042-021-11437-3
http://doi.org/10.15607/rss.2018.xiv.010
http://doi.org/10.1109/icra.2018.8460528
http://doi.org/10.48550/ARXIV.1703.00472
http://doi.org/10.1109/icra40945.2020.9196730
http://doi.org/10.51202/9783181023495-25
http://doi.org/10.1109/itsc.2016.7795741
http://doi.org/10.3390/s19102276
http://www.ncbi.nlm.nih.gov/pubmed/31100983
http://doi.org/10.1109/MSP.2017.2743240
http://doi.org/10.1109/ivs.2014.6856456
https://github.com/hill-a/stable-baselines
http://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
http://doi.org/10.1109/ivs.2015.7225834
https://modelica.org/documents/MLS.pdf
https://modelica.org/documents/MLS.pdf
https://fmi-standard.org/
http://doi.org/10.3384/ecp11063180

Appl. Sci. 2023, 13, 3456 24 of 24

27. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.

28. Sutton, R.; Barto, A. Reinforcement Learning: An Introduction; A Bradford Book: Cambridge, MA, USA, 2018.
29. Ziebart, B. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy. Dissertation Thesis, Carnegie

Mellon University, Pittsburgh, PA, USA, 2010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Contribution of This Paper
	Paper Overview
	Notation

	Problem Statement
	Learning-Based Path following Control with Parametric Uncertainties
	Oberservation Space of the Path following Control Environment
	Action Space of the Agents
	Design of the Reward Function
	Learning with Dynamics Randomization
	Mass Randomization
	Inertia Randomization
	Friction Randomization

	Training Setup
	Simulation Framework
	Training Procedure

	Tests and Performance Comparison
	Tests and Comparison of the nomRL-PFC and the m -randRL-PFC
	Tests and Comparison of the nomRL-PFC and the 𝐽-randRL-PFC
	Tests and Comparison of the nomRL-PFC and the -randRL-PFC

	Conclusions and Outlook
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

