Ahmic, Kenan und Ultsch, Johannes und Brembeck, Jonathan und Winter, Christoph (2023) Reinforcement Learning-Based Path Following Control with Dynamics Randomization for Parametric Uncertainties in Autonomous Driving. Applied Sciences. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/app13063456. ISSN 2076-3417.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://www.mdpi.com/2076-3417/13/6/3456
Kurzfassung
Reinforcement learning-based controllers for safety-critical applications, such as autonomous driving, are typically trained in simulation, where a vehicle model is provided during the learning process. However, an inaccurate parameterization of the vehicle model used for train-ing heavily influences the performance of the reinforcement learning agent during execution. This inaccuracy is either caused by changes due to environmental influences or by falsely esti-mated vehicle parameters. In this work, we present our approach of combining dynamics ran-domization with reinforcement learning to overcome this issue for a path-following control task of an autonomous and over-actuated robotic vehicle. We train three independent agents, where each agent experiences randomization for a different vehicle dynamics parameter, i.e., the mass, the yaw inertia, and the road-tire friction. We randomize the parameters uniformly within pre-defined ranges to enable the agents to learn an equally robust control behavior for all possible parameter values. Finally, in a simulation study, we compare the performance of the agents trained with dynamics randomization to the performance of an agent trained with the nominal parameter values. Simulation results demonstrate that the former agents obtain a higher level of robustness against model uncertainties and varying environmental conditions than the latter agent trained with nominal vehicle parameter values.
elib-URL des Eintrags: | https://elib.dlr.de/194223/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Reinforcement Learning-Based Path Following Control with Dynamics Randomization for Parametric Uncertainties in Autonomous Driving | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 9 März 2023 | ||||||||||||||||||||
Erschienen in: | Applied Sciences | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.3390/app13063456 | ||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
Name der Reihe: | Special Issue Technology Development of Autonomous Vehicles | ||||||||||||||||||||
ISSN: | 2076-3417 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | reinforcement learning; deep neural networks; dynamics randomization; autonomous driving; motion control; path following control; uncertainty modeling | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Intelligente Mobilität (SR) [RO] | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Fahrzeug-Systemdynamik | ||||||||||||||||||||
Hinterlegt von: | Ahmic, Kenan | ||||||||||||||||||||
Hinterlegt am: | 03 Apr 2023 11:13 | ||||||||||||||||||||
Letzte Änderung: | 28 Nov 2023 12:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags