elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

From underactuation to quasi-full actuation: Aiming at a unifying control framework for articulated soft robots

Keppler, Manuel und Ott, Christian und Albu-Schäffer, Alin Olimpiu (2022) From underactuation to quasi-full actuation: Aiming at a unifying control framework for articulated soft robots. International Journal of Robust and Nonlinear Control, 32 (9), Seiten 5453-5484. Wiley. doi: 10.1002/rnc.6102. ISSN 1049-8923.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://dx.doi.org/10.1002/rnc.6102

Kurzfassung

We establish a structure preserving state and input transformation that allows a class of underactuated Euler Lagrange systems to be treated as “quasi-fully” actuated. In this equivalent quasi-fully actuated form, the system is characterized by the same Lagrangian structure as the original one. This facilitates the design of control approaches that take into account the underlying physics of the system and that shape the system dynamics to a minimum extent. Due to smoothness constraints on the new input vector that acts directly on the noncollocated coordinates, we coin the term quasi-fully actuated. The class of Euler–Lagrange systems we consider is the class of articulated soft robots with nonlinear spring characteristics that are modeled with a block diagonal inertia matrix. We illustrate how the quasi-fully actuated form enables the direct transfer of control concepts that have been derived for fully actuated manipulators. We adopt the popular energy-shaping and two passivity-based concepts. The exemplary adoptions of the PD+ and Slotine and Li controllers allow us to solve the task-space tracking problem for highly elastic joint robots with nonlinear spring characteristics. These control schemes allow compliant behavior of the robot's TCP to be specified with respect to a reference trajectory. A key aspect of the presented framework is that it enables the adoption of rigid joint controllers as well as concepts underlying the original stability analysis. We believe that our framework presents an important step toward unifying the control design for rigid and articulated soft robots.

elib-URL des Eintrags:https://elib.dlr.de/193639/
Dokumentart:Zeitschriftenbeitrag
Titel:From underactuation to quasi-full actuation: Aiming at a unifying control framework for articulated soft robots
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Keppler, ManuelManuel.Keppler (at) dlr.dehttps://orcid.org/0000-0002-1532-963XNICHT SPEZIFIZIERT
Ott, ChristianChristian.Ott (at) dlr.dehttps://orcid.org/0000-0003-0987-7493NICHT SPEZIFIZIERT
Albu-Schäffer, Alin OlimpiuAlin.Albu-Schaeffer (at) dlr.dehttps://orcid.org/0000-0001-5343-9074142115925
Datum:26 Februar 2022
Erschienen in:International Journal of Robust and Nonlinear Control
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:32
DOI:10.1002/rnc.6102
Seitenbereich:Seiten 5453-5484
Verlag:Wiley
ISSN:1049-8923
Status:veröffentlicht
Stichwörter:robot control, joint elasticity, passivity-based control, impedance control, underactuated system
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Roboterdynamik & Simulation [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Analyse und Regelung komplexer Robotersysteme
Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Keppler, Manuel
Hinterlegt am:26 Jan 2023 20:07
Letzte Änderung:26 Sep 2023 14:34

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.