Ristea, Nicolae-Catalin and Anghel, Andrei and Datcu, Mihai and Chapron, Betrand (2022) Guided Deep Learning by Subaperture Decomposition: Ocean Patterns from SAR Imagery. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 6825-6828. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884291.
PDF
11MB |
Official URL: https://ieeexplore.ieee.org/document/9884291
Abstract
Spaceborne synthetic aperture radar (SAR) can provide meters-scale images of the ocean surface roughness day-or-night in nearly all weather conditions. This makes it a unique asset for many geophysical applications. Sentinel-l SAR wave mode (WV) vignettes have made possible to capture many important oceanic and atmospheric phenomena since 2014. However, considering the amount of data provided, expanding applications requires a strategy to automatically process and extract geophysical parameters. In this study, we propose to apply subaperture decomposition (SD) as a preprocessing stage for SAR deep learning models. Our data-centring approach surpassed the baseline by 0.7%, obtaining state-of-the-art on the TenGeoP-SARwv data set. In addition, we empirically showed that SD could bring additional information over the original vignette, by rising the number of clusters for an unsupervised segmentation method. Overall, we encourage the development of data-centring approaches, showing that, data preprocessing could bring significant performance improvements over existing deep learning models.
Item URL in elib: | https://elib.dlr.de/193340/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Guided Deep Learning by Subaperture Decomposition: Ocean Patterns from SAR Imagery | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884291 | ||||||||||||||||||||
Page Range: | pp. 6825-6828 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Subapertures decomposition, remote sensing, SAR, deep learning, unsupervised segmentation | ||||||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - SAR methods | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Deposited On: | 16 Jan 2023 08:56 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page