
GUIDED DEEP LEARNING BY SUBAPERTURE DECOMPOSITION: OCEAN PATTERNS
FROM SAR IMAGERY
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ABSTRACT

Spaceborne synthetic aperture radar (SAR) can provide
meters-scale images of the ocean surface roughness day-or-
night in nearly all weather conditions. This makes it a unique
asset for many geophysical applications. Sentinel-1 SAR
wave mode (WV) vignettes have made possible to capture
many important oceanic and atmospheric phenomena since
2014. However, considering the amount of data provided,
expanding applications requires a strategy to automatically
process and extract geophysical parameters. In this study,
we propose to apply subaperture decomposition (SD) as a
preprocessing stage for SAR deep learning models. Our data-
centring approach surpassed the baseline by 0.7%, obtaining
state-of-the-art on the TenGeoP-SARwv data set. In addition,
we empirically showed that SD could bring additional infor-
mation over the original vignette, by rising the number of
clusters for an unsupervised segmentation method. Overall,
we encourage the development of data-centring approaches,
showing that, data preprocessing could bring significant per-
formance improvements over existing deep learning models.

Index Terms— Subapertures decomposition, remote
sensing, SAR, deep learning, unsupervised segmentation.

1. INTRODUCTION

The ocean covers more than 70% of the Earth’s surface,
conditioning fundamentally the climate system. Comprehen-
sive observations and measurements of the ocean surface are
essential in order to have a better understanding of air–sea
interactions as well as to develop high-resolution climate
models [1]. One of the most used space-borne sensors for
ocean observation is the SAR, used by satellite mission
Sentinel-1 from 2014, when the WV mode, dedicated for
retrieving ocean wave proprieties at global scale [2], was im-
plemented. The routine WV measurements, available only on
the Sentinel-1A/B, have a spatial resolution of approximately
4 meters and a scene footprint of 20 by 20 km. These sensors
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collect monthly nearly 120,000 WV vignettes of the global
ocean surface, but without automated means to identify the
geophysical features captured by each image, the potential
would remain untapped.

Several works have been proposed for automatic anal-
ysis of vignettes in order to extract interpretative informa-
tion, which could be transformed in geophysical parameters.
On the one hand, classic machine learning algorithms have
mostly been developed for oil spills and ships detection [3].
These methods depend on the empirically hand-crafted fea-
tures, which are usually insufficient to generalize the local
variations, shapes and structural patterns [1, 4]. On the other
hand, once with the development of deep neural networks
(DNNs), deep learning algorithms have become more pop-
ular in geo-science related tasks, such as, ocean SAR im-
agery [5–8]. In [6] authors proposed an automatic system for
significant wave height prediction from SAR vignettes, which
surpassed the existing methods by a significant margin. They
developed a DNN architecture to fusion late features from two
separate branches. Another example of DNN for ocean exam-
ination is a fully convolutional network (FCN) used to predict
the sea ice concentration [8]. The network is based on a U-
Net architecture and is able to obtain an accuracy of 78.2%,
while classifying between 6 classes. In order to extract global
information from vignettes, in [5] authors propose to classify
each ocean surface vignette in accordance with 10 geophys-
ical phenomena, annotated in TenGeoP-SARwv data set [9].
They obtained an overall accuracy of 98.4% by fine-tuning the
InceptionV3 network on decimated intensity vignettes. Dif-
ferent from them, we propose to use the SD algorithm as a
preprocessing stage in order to enhance the network’s perfor-
mance.

Nevertheless, TenGeoP-SARwv data set contains a single
label for observations which covers an oceanic region of 20
square km. This categorization might be adequate for large
scale physical phenomena (e.g., wind streaks), but it is not
applicable for local phenomena (e.g., icebergs). Moreover,
the shapes of the ocean features are also diverse, like narrow
curves for fronts, aggregation of disconnected areas for bio-
logical slicks or wide regions for low wind areas [7]. To over-

6825978-1-6654-2792-0/22/$31.00 ©2022 IEEE IGARSS 2022

IG
AR

SS
 2

02
2 

- 2
02

2 
IE

EE
 In

te
rn

at
io

na
l G

eo
sc

ie
nc

e 
an

d 
Re

m
ot

e 
Se

ns
in

g 
Sy

m
po

siu
m

 |
 9

78
-1

-6
65

4-
27

92
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IG
AR

SS
46

83
4.

20
22

.9
88

42
91

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on January 14,2023 at 21:50:42 UTC from IEEE Xplore.  Restrictions apply. 



pass this rough labeling generalization, in [7] authors propose
a semantic segmentation task, conducting to regions from the
same vignette which presents the same geophysical phenom-
ena. They rely on a FCN architecture based on U-Net, which
is able to predict, at pixel level, the classes from the input
vignettes. Differently, we adapted an unsupervised segmen-
tation algorithm [10], which is able to find multiple clusters
in the same vignette. Not only that the number of clusters for
our approach is not upper bounded by the number of classes
presented in the data set, like in [7], but also we do not need
any labels to perform the segmentation. Moreover, we empir-
ically showed that by decomposing vignettes in subapertures,
the model is able to find more clusters, enforcing the idea that
observing the ocean from different angles, we might see dif-
ferent backscatter patterns.

The SD algorithm is widely used for SAR imagery [11–
14]. The method was combined with both classical signal pro-
cessing algorithms [12–14] and deep learning methods [11].
In [12] the SD algorithm is proposed for ship detection, while
in [13] it is used for target characterization. Moreover, the
SD algorithm was used to transform a single channel SAR
image into three channels image, by decomposing into three
subapertures, in order to use pretrained DNN for target clas-
sification on the ground [11]. Distinct for all SD based ap-
proaches, we propose to use this algorithm as a generic pre-
processing step for training SAR deep learning methods on
ocean vignettes.

In summary, our contribution is twofold:
• We are the first who propose the SD algorithm as

an preprocessing stage for ocean SAR deep learning
models, achieving state-of-the-art results on TenGeoP-
SARwv data set.

• We adapted an unsupervised segmentation method [10]
for ocean SAR imagery and empirically showed that
training models on subapertures, rather than the origi-
nal vignettes, enrich the number of classes found on the
ocean surface.

2. METHOD

2.1. Subaperture decomposition

The basic SAR system acquires the backscatter returned from
irradiated targets in different positions and different azimuth
angles along the radar trajectory. In order to obtain high az-
imuth resolution, the real antenna aperture is replaced by the
synthetic aperture, by processing the signal along the azimuth
dimension. Considering that the ocean surface is highly non-
stationary, observing it from different angles might bring
additional information about the illuminated area. Conse-
quently, we define the subaperture as the image formed using
only a part of the total azimuth angle. Therefore, decompos-
ing the original vignette into multiple subapertures, we can
mimic different observation angles of the same scene. The
SD algorithm is visually described in Fig. 1.

The σ0 calibration. According to [9], the measured normal-
ized radar cross section σ0 by SAR over the ocean is highly
dependent on the local ocean surface wind and viewing an-
gles (incidence and azimuth) of the radar. Therefore, the σ0

of each input vignette is calibrated by dividing it to a refer-
ence factor, constructed by assuming a constant wind of 10
m/s at 45◦ relative to the antenna look angle.
Azimuth FFT. After σ0 calibration, we perform the Fast
Fourier Transform (FFT) along the azimuth axis, in order to
obtain the vignette’s spectrum. The number of FFT points is
equal to the number of points in the azimuth direction.
Hamming window compensation. Next, we perform a
Hamming window compensation, with a coefficient of 0.75,
in order to obtain a flat azimuth spectrum.
Subaperture generation. In the following stage, we filter the
processed vignette with 4 shifted Hamming windows (with
the same 0.75 coefficient), in order to obtain the correspond-
ing azimuth spectrum for each subaperture.
Azimuth iFFT. Having the azimuth spectrum for each sub-
aperture, we want to translate back the data into time domain
by performing an inverse Fast Fourier Transform (iFFT), with
the same parameters from the Azimuth FFT block.
Decimation. The last stage of the SD algorithm is the deci-
mation. The fine-resolution SAR subapertures are not neces-
sary for large scale geophysical phenomena, especially since
the classes described in [9] have scales of tens to thousands of
metres. Therefore to better highlight larger feature patterns,
for each resulted subaperture, we compute the intensity image
followed by a low-pass-filtering with a window of 10 × 10,
each filter’s coefficient being 0.01. The intensity images are
then decimated by 1/10 yielding a resolution of 50 meters.
2.2. Deep learning tasks
Classification. The success of the convolutional neural net-
works (CNNs) in image processing tasks [15] encouraged
their introduction in remote sensing applications and SAR
imagery [5–8]. Proposing a data-centring approach, we fo-
cused our attention on the preprocessing stage, rather than
the network’s architecture, therefore we employed two well-
known architectures, ResNet18 and InceptionV3, for the
ocean SAR image classification task. The networks were pre-
trained on the ImageNet data set and only two architectural
changes were made: the number of output neurons (10) and
the number of input channels (in accordance with the input).
Unsupervised segmentation. We employed the solution pre-
sented in [10] for unsupervised ocean SAR images segmen-
tation. Considering an input SAR image, the pixel labels and
feature representations are jointly optimized, by updating the
parameters with the gradient descent algorithm. Pixel label
prediction and network’s parameters learning are alternately
iterated to meet the following three conditions: (a) pixels of
similar features should be assigned the same label, (b) spa-
tially continuous pixels should be assigned the same label and
(c) the number of unique labels should be large. To serve our
scope, we adapted the first convolutional layer of the network
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Fig. 1. The preprocessing subaperture decomposition pipeline. An input vignette is processed by a series of blocks, followed
by the subaperture generation. Next, each subaperture is processed by the azimuth inverse FFT and the decimation blocks. The
output of each block is presented in an associated image.

Table 1. Accuracy and inference time results on the
TenGeoP-SARwv test set. The input type symbols are: O for
original vignette and Si for the ith subaperture. The signifi-
cantly better results (level 0.01) than corresponding baselines,
according to a paired McNemar’s test, are marked with †.

Method Input Accuracy Time (ms)
CPU GPU

InceptionV3 [5] O 98.4 101 12
InceptionV3 S1 94.8 121 18
InceptionV3 S1,2,3,4 99.1† 163 21
InceptionV3 O + S1,2,3,4 99.1 165 21
ResNet18 O 98.0 41 2
ResNet18 S1 94.0 56 5
ResNet18 S1,2,3,4 98.9† 98 12
ResNet18 O + S1,2,3,4 98.9 101 12

in accordance with the input’s number of channels.

3. EXPERIMENTS

Data set. TenGeoP-SARwv data set contains over 37,000
ocean vignettes with 10 geophysical phenomena. We used
the raw vignettes from the TenGeoP-SARwv data set, with
the assigned labels, and randomly split the data in training
(70%), validation (15%) and test (15%).
Hyper-parameters tuning. We tuned the hyper-parameters
on the validation set. The number of subapertures was con-
sidered from 2 to 6, the best results being achieved for 4. For
the classification task, we trained the models for 30 epochs
with Adam optimizer and a mini-batch size of 32. We set the
learning rate to 10−4 and used a weight decay of 10−5. Each
result presented in Table 1 is the maximum value from three

runs. For [10], we used the parameters proposed in the paper.
Results. In Table 1 we present the results obtained for two
DNN models, ResNet18 and InceptionV3, on TenGeoP-
SARwv test set. By using only one subaperture, corespondent
to a quarter of the entire spectrum, both models have a drop of
4% in accuracy. When all 4 subapertures are used (S1,2,3,4),
the accuracy raise with 0.7% for InceptionV3 and 0.8% for
ResNet18, in comparison with the corresponding baselines.
But, when the subapertures are concatenated with the original
vignette, no other improvements are observed. In addition,
we compared the DNNs inference time (including SD time)
in order to observe the overhead brought by our preprocess-
ing method. The SD algorithm is slower with approximately
60 ms on a Intel i9 CPU and with only 10 ms on a nVidia
RTX3090 card. But, the 0.5% performance improvement
brought by ResNet18 model trained on subapertures, in com-
parison with the baseline from [9], comes with no processing
time drawbacks.

Moreover, in Fig. 2 we showed qualitative results for the
unsupervised segmentation task on the ocean surface. In the
left column, is presented the vignette with the associated seg-
mentation, where only 2 different classes have been found.
While, in the right column, is presented the subaperture 1 with
the segmentation result (for the segmentation we considered
at input all subapertures), containing 3 different classes. Con-
sequently, using SD preprocessing method, deep models may
find new classes on the ocean SAR data, helping to locate and
characterise more geophysical phenomena.

4. CONCLUSION

In this paper, we proposed the SD algorithm as a data-centring
preprocessing method for ocean SAR images, which can im-
prove DNNs performances in two related tasks. We showed

6827

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on January 14,2023 at 21:50:42 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Segmentation results for [10] when the input is
the original vignette (left) and the concatenated subapertures
(right). The number of classes found are: 2 (left) and 3 (right).

that better results could be achieved using shallower nets, with
no additional processing time, and the SD could help segmen-
tation methods to find more classes on the ocean surface. In
future works, we aim to analyse more SAR processing algo-
rithms, which can be used for DNNs.
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R. Fablet, P. Tandeo, S. Saoudi, A. Mouche, and
G. Dibarboure, “Segmentation of sentinel-1 sar images
over the ocean, preliminary methods and assessments,”
in Proceedings of IGARSS. IEEE, 2021, pp. 4067–4070.

[8] I. De Gelis, A. Colin, and N. Longépé, “Prediction of
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