Calota, Iulia and Faur, Daniela and Datcu, Mihai (2022) Estimating NDVI from SAR Images Using DNN. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5232-5235. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884313.
PDF
442kB |
Official URL: https://ieeexplore.ieee.org/document/9884313
Abstract
The Normalized Difference Vegetation Index (NDVI) is an important factor to be considered in vegetation tracking and analysis, which can be easily derived from multispectral (MS) images. However, the limitation imposed by the atmospheric conditions makes the calculation of this index difficult. Because of the clouds, only a limited number of multispectral bands can capture the land appropriately. Furthermore, the multispectral sensors are dependent on the sunlight, which makes the acquisition of data more limited. These limitations do not hinder other types of Earth Observation (EO) data, like the scenes captured by the Synthetic Aperture Radar (SAR). However, SAR images cannot be used in NDVI calculation. In this article, we propose a deep learning (DL) based method for NDVI estimation from SAR data. Using a database with corresponding MS and SAR patches, we calculate the NDVI for each sample, then use a convolutional neural network (CNN) for predicting the NDVI of SAR images. This simple method leads to a precision of 70% in NDVI estimation from SAR images.
Item URL in elib: | https://elib.dlr.de/193338/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Estimating NDVI from SAR Images Using DNN | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884313 | ||||||||||||||||
Page Range: | pp. 5232-5235 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Normalized Difference Vegetation Index, Synthetic Aperture Radar, Multispectral images, Convolutional Neural Networks | ||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - SAR methods | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Deposited On: | 16 Jan 2023 08:54 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page