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ABSTRACT 

 

The Normalized Difference Vegetation Index (NDVI) is an 

important factor to be considered in vegetation tracking and 

analysis, which can be easily derived from multispectral 

(MS) images. However, the limitation imposed by the 

atmospheric conditions makes the calculation of this index 

difficult. Because of the clouds, only a limited number of 

multispectral bands can capture the land appropriately. 

Furthermore, the multispectral sensors are dependent on the 

sunlight, which makes the acquisition of data more limited. 

These limitations do not hinder other types of Earth 

Observation (EO) data, like the scenes captured by the 

Synthetic Aperture Radar (SAR). However, SAR images 

cannot be used in NDVI calculation. In this article, we 

propose a deep learning (DL) based method for NDVI 

estimation from SAR data. Using a database with 

corresponding MS and SAR patches, we calculate the NDVI 

for each sample, then use a convolutional neural network 

(CNN) for predicting the NDVI of SAR images. This simple 

method leads to a precision of 70% in NDVI estimation 

from SAR images. 

 

Index Terms— Normalized Difference Vegetation 

Index, Synthetic Aperture Radar, Multispectral images, 

Convolutional Neural Networks 

 

 

1. INTRODUCTION 

 

Atmospheric conditions cause difficulties in the analysis of 

multispectral EO data. Lately developed methods for 

automatic cloud detection perform filtering of the obstructed 

scenes. The authors of [1], implemented an object-oriented 

cloud and cloud shadow matching method. It is derived from 

the automatic cloud cover assessment (ACCA) algorithm. 

The presented method has three steps. The first step is to 

modify the ACCA algorithm to match the data provided by 

the Chinese satellites. The second step is to detect the cloud 

shadows. The last step is to correlate the clouds and the 

cloud shadows to refine the cloud map provided by the 

modified ACCA algorithm. 

       In [2], the authors propose a pixel-based cloud detection 

method. This method implies the extraction of features for 

each pixel, based on brightness or whiteness. These features 

and the patches are then classified using several supervised 

classification algorithms. 

       Algorithms for cloud removals have also been 

proposed. In [3], the authors suggest as a starting point the 

radiative transfer model, initially developed for Landsat, 

combined  with the reflectance of the Cirrus band of the 

sensor within the Landsat-8 satellite. This ensures that the 

thinner clouds are also removed. The authors of [4] extend 

the radiative transfer model to Sentinel-2 images to remove 

thin clouds. In [5], the authors use a convolutional neural 

network with multi-scale prediction scheme to remove the 

clouds from Sentinel-2 images. 

       The images synthesized by these methods suffer from 

inherent losses. In [6], the authors study the effects of Cirrus 

clouds on the NDVI and conclude that the error in NDVI 

calculation is directly proportionate to the optical thickness 

and particle distribution in the Cirrus clouds. For thicker 

clouds, such methods of cloud removal may not deliver 

appropriate results. 

       This leads to the development of algorithms for NDVI 

estimation in cloud-contaminated images. Such algorithms 

use time-series to estimate the NDVI in cloudy images 

similarly with the method presented in [7]. 

       A few authors have found working with SAR imagery 

appealing. In [8],  the correlation between SAR features and 

NDVI on maize fields is described. The authors of [9] use 

SAR data to compensate for the loss of information in 

optical images due to cloudy areas. 

       In this paper we submit a simple, CNN-based method to 

estimate NDVI form SAR data, at patch level. Our database 

contains both MS and SAR data of the same scene. The MS 

patches enable NDVI’s calculation while SAR patches serve 

to calculate SAR features which are added, as additional 

channels, to the SAR data. We train different architectures 

of CNNs, using the SAR patches enhanced by the additional 

features as input, the estimated NDVI representing the 

output. 

       Moreover, due to their already proved effectiveness we 

use the algorithms described in [10] and [11], that reduce the 

input dimension of a CNN by using Bag-of-Words instead of 

patches to reduce the training time. We started with SAR 

patches and additional features as CNN’s input. While 

testing various formats of data inputs,  we determined that 
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Bag-of-Words derived from the data is the optimal tradeoff 

to obtain both an optimal training time and highest accuracy.  

Bag-of-Words is used here as a dimension reduction 

technique for the convolutional neural network. A downside 

of CNNs is the large training time, especially when dealing 

with large datasets with large dimensions. Pruning is one of 

the developed methods used for faster training. However, the 

authors in [10] demonstrated that using BoW leads to a 

reduction of training time without significant impact in 

performance. 

 Moreover, the BoW algorithm used in this paper is 

faster than the original one [19], as it does not rely on K-

Means. It is based on the work described in [18] that 

demonstrates the optimal size of BoW/ Random images are 

selected and divided into 3x3 patches. From these patches, 

we randomly select 250 patches. We iterate through each 

image and divide it in 3x3 patches, that are compared to the 

patches in the dictionary using nearest neighbor algorithm. 

Thus, a histogram-like representation of each image is 

created, resulting in the Bag-of-Words. 

The results show that both methods reach high precision. 

 

 

2. METHODOLOGIES 

 

Supervised learning techniques, such as training with CNNs, 

require a large amount of labeled data. To validate our 

method, we should use a database contain both MS and SAR 

data, with a considerable number of patches revealing 

vegetation classes 

 

Figure 1: The proposed methodology. 

Figure 1 presents the diagram revealing the stages of our 

method. SAR images enables the pre-process the input of the 

CNN. From the MS images, we calculate the average NDVI 

per patch, then we split the range of NDVI into 5 intervals, 

considering the equal distribution of the images throughout 

them. Each interval becomes one of the 5 classes. 

Afterwards, we train the CNN (either the CNN in fig. 2 or 

VGG-19). 

 

BigEarthNet [12] [13], a dataset with 590326 corresponding 

Sentinel-1 (SAR) and Sentinel-2 (MS) patches fits this 

profile. This labeled dataset has 43 classes, most of them 

being related to vegetation. 

       We have included in our experiment only the patches 

relevant for vegetation from the dataset. Consequently a 

total of 17 labels have been ignored from BigEarthNet, our 

final dataset included 328586 patches containing vegetation-

related classes. 

       To estimate the density of green over the landcover we 

have used the Normalized Difference Vegetation Index- 

NDVI that describes the difference between -infrared (NIR) 

and the red (RED) reflectance of vegetation cover, using the 

following formula: 

 
(1) 

 

       In the case of Sentinel-2, the near-infrared band is band 

8 and the red band is band 4 [14]. In BigEarthNet, each 

multispectral image contains all the bands present in the 

original products, except for band 10. 

       The Sentinel-1 patches in BigEarthNet are preprocessed 

from ground range detected (GRD) products. The obtained 

patches correspond both geographically and temporally with 

the Sentinel-2 patches. 

       The NDVI of the 328586 patches selected from 

BigEarthNet ranges between -0.2 and 0.9. To simplify the 

operations, we chose to turn the problem into a classification 

task, rather than a prediction task – we divided the above 

range into 5 intervals, each interval being an NDVI class. 

The range is not uniformly divided, as this would lead to 

unbalanced patch distribution among classes. The Table 1 

describes this distribution of the NDVI in the 5 classes and 

the number of patches corresponding to the classes. 

 

Table 1. The distribution of the NDVI values and of the 

number of patches in the 5 NDVI classes. 

NDVI class NDVI range No. of patches 

1 -0.192 → 0.368 65708 

2 0.368 → 0.5325 70054 

3 0.5325 → 0.7047 64978 

4 0.7047 → 0.7769 63900 

5 0.7769 → 0.9291 63953 

 

       We observed that the convolutional neural networks are 

more sensitive to the number of samples than to the 

similarity among classes. That is why we chose equal 

distribution of the patches among the classes, rather than 

equal NDVI distribution. for example, class 1 covers NDVI 

values between -0.192 and 0.368, while class 4 covers only 

values between 0.7047 and 0.7769. 

       For more robustness, we increased the number of 

features of SAR images. The original SAR patches contain 

only the two polarities present in all Sentinel-1 products. 

Apart from these bands, we added a band for the Radar 
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Vegetation Index (RVI) adapted for Sentinel-1 [15] and the 

Normalized Ratio Procedure between Bands (NRPB) 

described in [16]. The authors have correlated the NDVI 

with the above indices, however the relationship is not 

straight-forward on the entire NDVI range. 

 

       We chose to train two different CNN architectures, a 

simple three-layered CNN and VGG-19 [17]. The three-

layered architecture is presented in Fig. 2. 

 

 
Figure 2: Three-layered architecture used for NDVI 

estimation in SAR images. 

 

       Furthermore, we wanted to verify, whether smaller 

dimensions deliver better result. Instead of the patches, at 

the input of the CNN we placed the BoW derived from the 

SAR patches with the additional bands. This method reduces 

the training time and benefits from the lower number of 

parameters, which also influence the performance of a CNN. 

BoW is a good method to preserve both spatial and spectral 

information, although the dimension is reduced in a drastic 

manner. The CNNs must be modified to use this method – 

instead of 2D layers, 1D layers have to be used. 

 

 

3. RESULTS 

 

We used the same settings in all runs: we chose stochastic 

gradient descent as an optimizer, and we trained each 

network for 100 epochs. The results of training patches are 

seen in Table 2 and the results of training BoW are seen in 

Table 3. 

       In Table 2, we can see that the precision reached a value 

of 0.7 with this simple method. It is worth mentioning that 

the training of patches lasted around 800 minutes for the 

three-layered architecture and around 1400 minutes for 

VGG-19. However, as expected, the results for VGG-19 are 

better, as it is a more robust network that the simple three-

layered architecture. 

 

Table 2: Results of training SAR images to estimate NDVI. 

Architecture Precision Recall F1 F2 

3-layered CNN 0.6528 0.6012 0.6259 0.6208 

VGG-19 0.7018 0.6615 0.6811 0.6771 

 

       In Table 3, we can see that the performance is like the 

training of patches, with little differences. However, the 

training time of VGG-19 was reduced to almost 400 

minutes, making this approach a faster alternative. As in the 

previous case, VGG-19 delivered better results. 

 

Table 3: Results of training SAR images to estimate NDVI. 

Architecture Precision Recall F1 F2 

3-layered CNN 0.644 0.6211 0.6323 0.6301 

VGG-19 0.7201 0.6545 0.6857 0.6793 

 

 

Figure 3: Patches samples that were correctly (right) 

classified in opposition to those misclassified (left). 

       Figure 3 shows random images that were misclassified 

(left column) or accurately (right column) classified. For 

each example, we specified what it contains (labels taken 

from the original dataset) and the predicted and correct 

NDVI classes. Each example includes the RGB image and 

its correspondent SAR images. Each SAR image represents 

one of the polarizations (VH and VV). We observe that 

classes with structures and patterns are correctly classified, 

as these are distinguishable also in the SAR representation. 

 

4. CONCLUSIONS 

This paper addressed the challenge to estimate the NDVI 

from cloudy patches. We proposed a simple deep learning-

based method to estimate the NDVI from SAR images. We 

benefitted from correlated SAR and MS patches from the 

BigEarthNet dataset, so that each SAR image has a 
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corresponding NDVI value calculated from MS images. We 

succeeded to increase result’s accuracy by adding two more 

bands calculated from SAR features, RVI and NPRB to the 

SAR patches .  

       To facilitate this process, we decided to switch to a 

classification task, rather than a prediction class. However, 

prediction or estimation of NDVI with a similar method is 

also possible. 

       Moreover, by using BoW instead of the patches 

themselves. we offer a faster alternative for training. This 

approach reduces the training time with the benefits of 

achieving similar results. 

       In future work, the target is to make this method more 

robust, as it is dependent on a multitude of factors: learning 

rate, number of samples, architecture and other 

hyperparameters specific to convolutional neural networks. 

 

 

5. ACKNOWLEDGEMENT 

 

This work was supported by a grant of the Romanian 

Ministry of Education and Research, CNCS-UEFISCDI, 

project number PN-III-P4-ID-PCE-2020-2120, within 

PNCDI III. 

 

6. REFERENCES 

 
[1] B. Zhong, W. Chen, S. Wu, L. Hu, X. Luo and Q. Liu, "A 

Cloud Detection Method Based on Relationship Between Objects 

of Cloud and Cloud-Shadow for Chinese Moderate to High 

Resolution Satellite Imagery," in IEEE Journal of Selected Topics 

in Applied Earth Observations and Remote Sensing, vol. 10, no. 

11, pp. 4898-4908, Nov. 2017. 

[2] L. Gómez-Chova, G. Mateo-García, J. Muñoz-Marí and G. 

Camps-Valls, "Cloud detection machine learning algorithms for 

PROBA-V," 2017 IEEE International Geoscience and Remote 

Sensing Symposium (IGARSS), 2017, pp. 2251-2254. 

[3] B. Zhou and Y. Wang, "A Thin-Cloud Removal Approach 

Combining the Cirrus Band and RTM-Based Algorithm for 

Landsat-8 OLI Data," IGARSS 2019 - 2019 IEEE International 

Geoscience and Remote Sensing Symposium, 2019, pp. 1434-

1437. 

[4] Y. Gao, Y. Wang and H. Lv, "Extendibility of a Thin-Cloud 

Removal Algorithm to Hi-Resolution Visible Bands of Sentinel-2 

Data," IGARSS 2018 - 2018 IEEE International Geoscience and 

Remote Sensing Symposium, 2018, pp. 927-930. 

[5] K. Lee and J. Sim, "Cloud Removal of Satellite Images Using 

Convolutional Neural Network With Reliable Cloudy Image 

Synthesis Model," 2019 IEEE International Conference on Image 

Processing (ICIP), 2019, pp. 3581-3585. 

[6] K. Rajitha, M. M. Prakash Mohan and M. R. R. Varma, "Effect 

of cirrus cloud on normalized difference Vegetation Index (NDVI) 

and Aerosol Free Vegetation Index (AFRI): A study based on 

LANDSAT 8 images," 2015 Eighth International Conference on 

Advances in Pattern Recognition (ICAPR), 2015, pp. 1-5. 

[7] X. Ling and R. Cao, "A New Spatiotemporal Data Fusion 

Method to Reconstruct High-Quality Landsat Ndvi Time-Series 

Data," 2021 IEEE International Geoscience and Remote Sensing 

Symposium IGARSS, 2021, pp. 2564-2567. 

[8] J. Alvarez-Mozos, J. Villanueva, M. Arias and M. Gonzalez-

Audicana, "Correlation Between NDVI and Sentinel-1 Derived 

Features for Maize," 2021 IEEE International Geoscience and 

Remote Sensing Symposium IGARSS, 2021, pp. 6773-6776. 

[9] A. Mazza, M. Gargiulo, G. Scarpa and R. Gaetano, "Estimating 

the NDVI from SAR by Convolutional Neural Networks," 

IGARSS 2018 - 2018 IEEE International Geoscience and Remote 

Sensing Symposium, 2018, pp. 1954-1957. 

[10] I. Calota, D. Faur and M. Datcu, "DNN-Based Semantic 

Extraction: Fast Learning from Multispectral Signatures," IGARSS 

2020 - 2020 IEEE International Geoscience and Remote Sensing 

Symposium, 2020, pp. 3672-3675. 

[11] I. Calota, D. Faur and M. Datcu, "Bag-of-Words for Transfer 

Learning," 2021 IEEE International Geoscience and Remote 

Sensing Symposium IGARSS, 2021, pp. 808-811. 

[12] G. Sumbul, M. Charfuelan, B. Demir and V. Markl, 

"Bigearthnet: A Large-Scale Benchmark Archive for Remote 

Sensing Image Understanding," IGARSS 2019 - 2019 IEEE 

International Geoscience and Remote Sensing Symposium, 2019, 

pp. 5901-5904. 

[13] G. Sumbul et al., "BigEarthNet-MM: A Large-Scale, 

Multimodal, Multilabel Benchmark Archive for Remote Sensing 

Image Classification and Retrieval [Software and Data Sets]," in 

IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 3, pp. 

174-180, Sept. 2021. 

[14] https://sentinels.copernicus.eu/web/sentinel/technical-

guides/sentinel-2-msi/level-2a/algorithm 

[15] https://custom-scripts.sentinel-hub.com/custom-

scripts/sentinel-1/radar_vegetation_index/# 

[16] R. Filgueiras, E. C. Mantovani, D. Althoff, E. I. Fernandes 

Filho, and F. F. da Cunha, “Crop NDVI Monitoring Based on 

Sentinel 1,” Remote Sensing, vol. 11, no. 12, p. 1441, Jun. 2019. 

[17] K. Simonyan and A. Zisserman. “Very Deep Convolutional 

Networks for Large-Scale Image Recognition.” CoRR, (2015). 

[18] S. Cui, G. Schwarz and M. Datcu, "Remote Sensing Image 

Classification: No Features, No Clustering", in IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote 

Sensing, vol. 8, no. 11, pp. 5158- 5170, 2015. 

[19] Fei-Fei Li; Perona P., “A Bayesian Hierarchical Model for 

Learning Natural Scene Categories”, 2005 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition 

(CVPR'05), Vol. 2. p. 524, 2005. 

5235

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on January 14,2023 at 21:38:03 UTC from IEEE Xplore.  Restrictions apply. 


