Calota, Iulia und Faur, Daniela und Datcu, Mihai (2022) Estimating NDVI from SAR Images Using DNN. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 5232-5235. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884313.
PDF
442kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9884313
Kurzfassung
The Normalized Difference Vegetation Index (NDVI) is an important factor to be considered in vegetation tracking and analysis, which can be easily derived from multispectral (MS) images. However, the limitation imposed by the atmospheric conditions makes the calculation of this index difficult. Because of the clouds, only a limited number of multispectral bands can capture the land appropriately. Furthermore, the multispectral sensors are dependent on the sunlight, which makes the acquisition of data more limited. These limitations do not hinder other types of Earth Observation (EO) data, like the scenes captured by the Synthetic Aperture Radar (SAR). However, SAR images cannot be used in NDVI calculation. In this article, we propose a deep learning (DL) based method for NDVI estimation from SAR data. Using a database with corresponding MS and SAR patches, we calculate the NDVI for each sample, then use a convolutional neural network (CNN) for predicting the NDVI of SAR images. This simple method leads to a precision of 70% in NDVI estimation from SAR images.
elib-URL des Eintrags: | https://elib.dlr.de/193338/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Estimating NDVI from SAR Images Using DNN | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884313 | ||||||||||||||||
Seitenbereich: | Seiten 5232-5235 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Normalized Difference Vegetation Index, Synthetic Aperture Radar, Multispectral images, Convolutional Neural Networks | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - SAR-Methoden | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Hinterlegt am: | 16 Jan 2023 08:54 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags