elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Inter-polarization Mapping via Gaussian Process Regression for Sentinel-1 EW Denoising

Focsa, Adrian and Anghel, Andrei and Datcu, Mihai (2022) Inter-polarization Mapping via Gaussian Process Regression for Sentinel-1 EW Denoising. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2063-2066. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883828.

[img] PDF
7MB

Official URL: https://ieeexplore.ieee.org/document/9883828

Abstract

The Sentinel-1 SAR images acquired using the TOPSAR modes i.e., IW and EW on cross-polarization are significantly affected by the thermal noise on low-back-scattering areas. For example, in the arctic and some desert zones both inter- swath and inter-burst noise amplification occurs. In this paper we propose a workflow for removing the thermal noise from Sentinel-1 ground detected SAR images on low back-scattering conditions by employing the co-polarization SAR image and the Gaussian Process Regression. Our processing flow uses the noise vectors provided in the European Space Agency (ESA) ground detected product and scales them such that a slightly over-denoised image is produced. Then, the Gaussian Process Regression is used to map the co-polarization SAR image into the cross-polarization SAR image. Prior to this step, a radiometric correction is applied on the co-polarization data, since its pixel values are heavily dependent on the incidence angle. Finally, the denoised cross-polarization image is obtained as a linear combination between the over-denoised version and the predicted image. Since, the co-polarization channel is employed for the prediction of the missing values in the cross-polarization channel there is no need for co-registration and the de noising procedure is trustworthy.

Item URL in elib:https://elib.dlr.de/193337/
Document Type:Conference or Workshop Item (Speech)
Title:Inter-polarization Mapping via Gaussian Process Regression for Sentinel-1 EW Denoising
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Focsa, AdrianUniversity Politehnica of BucharestUNSPECIFIEDUNSPECIFIED
Anghel, AndreiUniversity Politehnica BucharestUNSPECIFIEDUNSPECIFIED
Datcu, MihaiUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2022
Journal or Publication Title:International Geoscience and Remote Sensing Symposium (IGARSS)
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
DOI:10.1109/IGARSS46834.2022.9883828
Page Range:pp. 2063-2066
Publisher:IEEE - Institute of Electrical and Electronics Engineers
Status:Published
Keywords:TOPSAR denoising, Gaussian Process Regression, cross-polarization
Event Title:IGARSS 2022
Event Location:Kuala Lumpur, Malaysia
Event Type:international Conference
Event Start Date:17 July 2022
Event End Date:22 July 2022
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Artificial Intelligence, R - SAR methods
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Haschberger, Dr.-Ing. Peter
Deposited On:16 Jan 2023 08:54
Last Modified:24 Apr 2024 20:54

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.