Focsa, Adrian and Anghel, Andrei and Datcu, Mihai (2022) Inter-polarization Mapping via Gaussian Process Regression for Sentinel-1 EW Denoising. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2063-2066. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883828.
PDF
7MB |
Official URL: https://ieeexplore.ieee.org/document/9883828
Abstract
The Sentinel-1 SAR images acquired using the TOPSAR modes i.e., IW and EW on cross-polarization are significantly affected by the thermal noise on low-back-scattering areas. For example, in the arctic and some desert zones both inter- swath and inter-burst noise amplification occurs. In this paper we propose a workflow for removing the thermal noise from Sentinel-1 ground detected SAR images on low back-scattering conditions by employing the co-polarization SAR image and the Gaussian Process Regression. Our processing flow uses the noise vectors provided in the European Space Agency (ESA) ground detected product and scales them such that a slightly over-denoised image is produced. Then, the Gaussian Process Regression is used to map the co-polarization SAR image into the cross-polarization SAR image. Prior to this step, a radiometric correction is applied on the co-polarization data, since its pixel values are heavily dependent on the incidence angle. Finally, the denoised cross-polarization image is obtained as a linear combination between the over-denoised version and the predicted image. Since, the co-polarization channel is employed for the prediction of the missing values in the cross-polarization channel there is no need for co-registration and the de noising procedure is trustworthy.
Item URL in elib: | https://elib.dlr.de/193337/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Inter-polarization Mapping via Gaussian Process Regression for Sentinel-1 EW Denoising | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883828 | ||||||||||||||||
Page Range: | pp. 2063-2066 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | TOPSAR denoising, Gaussian Process Regression, cross-polarization | ||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - SAR methods | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Deposited On: | 16 Jan 2023 08:54 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page