


step in [7] has similar effect as the power balancing coef�cient
in [2], [5], [8] and it is computed from the image pro�le (range
projection). Inherently, the output from [7] has less details
since wavelet sub-bands are soft-thresholded.

Many approaches for the evaluation of the cross-polarization
noise reduction performance were assessed. In [8], the inter-
swath boundaries continuity together with a key-points match-
ing approach was investigated whereas in [5] an automatic K-
means clustering on Haralick texture features was performed.
Mascolo et. al [9] quanti�ed the denoising performance
through Monte Carlo simulations.

As shown in Fig. 1c the denoising algorithm [1] reduces the
thermal noise from Fig. 1b. However, the average range pro-
�les displayed in Fig. 2 reveal that the 2D noise �eld provided
by ESA is locally inconsistent. Therefore, the denoised product
is either over-denoised or under-denoised. These effects mostly
occur in the inter-swath regions.

Fig. 2: Average range projection over raw and ESA denoised
cross-polarization intensity image. Evidently, there are por-
tions in the range pro�le of the denoised image still positively
correlated to the range noise vectors

In this paper we propose a work�ow for removing the
thermal noise from Sentinel-1 GRDM SAR images on low
back-scattering conditions by employing the co-polarization
SAR image and the Gaussian Process Regression (GPR)
[10]. Our method’s reliability is ensured by the fact that the
reconstruction of the pixels in the cross-polarization image
is performed with data recorded by the same sensor and no
additional co-registration processing is needed. The proposed
denoising procedure uses the noise vectors provided in the
product ancillary �les and scales them such that a slightly over-
denoised image is produced using (1). Then the Gaussian Pro-
cess Regression [10] is used to map the co-polarization SAR
image into the cross-polarization SAR image. However, prior
to this step, the co-polarization data is applied a radiometric
correction, since its pixel values are heavily dependent on the
incidence angle. Finally, the denoised cross-polarization image
is obtained as a linear combination between the over-denoised
version and the GPR predicted image. The weights map is
obtained through �ltering with a circular kernel the binary
map containing 1’s at the positions where ESA denoising
method (1), before applyingmax operator, resulted in a null
or negative pixels values.

The rest of the paper is structured as follows. Section II
presents the proposed processing �ow and introduces the GPR

key-points in sub-section II-A and the radiometric correction in
sub-section II-B. The proposed denoising procedure is detailed
in sub-section II. In Section III, the denoising results are
displayed and discussed whereas the conclusions are drawn
in Section IV.

II. PROPOSED WORKFLOW

The proposed denoising processing �ow is based on the
recovery of the data lost after applying (1) with data inferred
through GPR. As shown in Fig. 3, �rst, both co-polarized and
cross-polarized GRDM SAR images are corrected using [1].
Then, the incidence angle compensation is applied. This step is
depicted in sub-section II-B. Further, using reliable areas (high

Fig. 3: Proposed denoising work�ow

SNNR de�ned in [5]) in each the dual-pol SAR images the
kernel-based GPR model is trained. The training process learns
the physical signature translation from co-polarized data to
cross-polarized data. The input data is represented by the ESA
denoised - incidence angle corrected cross-polarized pixels
whereas the output is the corresponding co-polarized pixels.

I d[proposed ] = I m � I d[ESA 0] + (1 � I m ) � I [GP R ] (3)

In (3), the �nal denoised image is obtained by combining
the GPR predictionI [GP R ] with the output obtained using (2)
with K pb = 0 , T -identity transformation andK ns chosen such
that an over-denoised version (I d[ESA 0]) of the raw image is
obtained. The two components are weighted using the mask
I m . The mask is obtained in a two step process. When the
subtraction of the 2D noise �eld from the noisy image is
performed, the negative and null values positions are stored
and a new image containing ones on those positions and zeros
otherwise is formed. Then, this binary mask is ’smeared’ using
a 7� 7 circular �ltering kernel resulting the �nal weights mask.

A. Gaussian Process Regression
Even though Gaussian Process Regression is a powerful

Bayesian prediction tool, it has been presented relatively
recently [10] as a Machine Learning technique. GPR was
previously known as Kriging interpolation. It has been suc-
cessfully employed for physical parameters mapping in the
context of polarimetric SAR data [11].

y = f (X ) + " ; " � N (0; � I n ) (4)

The nonlinear regression model for a given training set
D (y ; X ) is depicted by (4). Given the observed input data
set X = f x 1 ; x 2 ; :::; x N g and the corresponding output set
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y = f y1; y2; :::; yN g with x i 2 RD andyi 2 R, a multivariate
Gaussian distribution models the function values. In Section
III, the presented results are obtained using an one-to-one
mapping (D = 1 ).

p
�
y test jX test ; D

�
= N

�
y test j� � ; � 2

�
�

(5)

The predicted values and their corresponding variances
are analytically derived from the posterior distribution (5)
associated with the test outputsy test .

� � = K T
f �

�
K f f + � 2I N

� � 1 y (6)

In (6) and (7), K f � is the covariance matrix between
the training and the test points,K f f is the train samples
covariance matrix whereasK �� represents the test samples
covariance matrix.

� 2
� = � 2 + K �� � K T

f �
�
K f f + � 2I N

� � 1 K f � (7)

In the experiments presented in Section III we have used
the squared exponential kernel de�ned in (8).

k(x i ; x j ) = � 2
k exp

 

�
1
2

NX

l =1

(x il � x jl )2

� k

!

(8)

In (8), the hyper-parameters� k and � k model the bell-like
shape of the kernel and implicitly the smoothness of the
predictorf .

B. Incidence angle compensation
As is the case of TOPSAR mode, for wide incidence

angle range acquisitions, many SAR image applications need
a correction pre-processing step. In our case, the incidence
angle compensation purpose is to reduce the incidence angle
dependence of the back-scattering energy not only for the
co-polarization SAR image, for which this effect is obvious
[see Fig. 1a] but also for the cross-polarization image prior to
feeding them to GPR.

(a) (b)

Fig. 4: Incidence angle compensation pro�le estimation: a)
example-1 and b) example-2

The most common techniques for incidence angle compen-
sation are linear and n-th power cosine correction. However,
as noted in [12]. these approaches may not comply with
all scanning scenarios and illuminated scenes. Therefore, we

(a) (b)

(c) (d)

Fig. 5: Incidence angle compensation examples: a) Raw co-
polarization GRDM image example-1, b) Corrected version
of b), c) Raw co-polarization GRDM image example-2, d)
Corrected version of c)

propose an new compensation algorithm ef�cient for the dual-
pol data used in this study. The processing steps need to
perform the incidence angle compensation are listed below:

1. Compute the image pro�le (range) only for pixels obeying
SNNR cross � pol < 3dB ;

2. Select reliable regions from pro�le (mid swath intervals
for the sub-swaths 2-5 and the highest SNNR regions from
the �rst sub-swath)

3. Fit a polynomial ratio function for the �rst two sub-swaths
(the exponential decay function �ts less) and a �rst order poly-
nomial for the last 3 sub-swaths. The discontinuity between
the two regression parts is treated by adding/subtracting half
of the offset corresponding to the intersection abscissa point.

4. Linearly �t the obtained regression curve to the raw range
pro�le.

The �rst step avoids the dependence of the range pro�le of
strong back-scattering targets. The second step is useful such
that the sub-swath boundary regions to be discarded since they
are more likely to be affected by over/under-denoising.

The range pro�les used to compensate the incidence angle
dependence are highlighted in Fig. 4 whereas the raw and the
corrected versions of the cross-polarization images is shown
in Fig. 5.

III. R ESULTS

In this section the denoised images resulted by applying the
proposed denoising work�ow are displayed and compared to
the ones obtained by [1]. The four denoised example images
correspond to the products (example-1,...,example-4) listed
below:

� S1A EW GRDM 1SDH 20210621T07215720210621T072257038435 04890F A9C0

� S1A EW GRDM 1SDH 20210620T06415120210620T064251038420 0488A2 65A8

� S1B EW GRDM 1SDH 20190124T07442620190124T074526014633 01B458 E8F5

� S1A EW GRDM 1SDH 20210307T07053020210307T070630036889 0456BB 881C
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(a) example-1: ESA method (b) example-1: proposed

(c) example-2: ESA method (d) example-2: proposed

(e) example-3: ESA method (f) example-3: proposed

(g) example-4: ESA method (h) example-4: proposed

Fig. 6: Comparative results obtained with the method de-
scribed in [1] called ESA method and the proposed one. The
mean range pro�les overlay the results.

The weights masks resulted for the displayed examples in
Fig. 7 are shown in Fig. 6. We have usedK ns = 1 :2 as scaling
factor to produce the over-denoised images in the presented
examples. Visual proof that the proposed method overcomes
the limitations of the one depicted in [1] is provided in Fig. 7.
Moreover, Fig. 6f presents a result over a product also analyzed
in [7]. As opposed to [7], our method manages to preserve
more details in the open water region.

IV. CONCLUSIONS

In this paper we proposed a technique for reducing the
thermal noise in Sentinel-1 EW GRDM products recorded over
weak back-scattering scenarios. To our knowledge, it is the
�rst denoising procedure to bene�t from the co-polarization
image. Beside the visual enhancement of the denoised image,
the average range pro�les (red curves in Fig. 6) proves that

(a) I m : example-1(b) I m : example-2(c) I m : example-3(d) I m : example-4

Fig. 7: The masks employed in the proposed denoising process
for the four examples in Fig. 6. As expected, the pixels located
in the inter-swath/inter-burst regions are more likely to be
replaced by the kernel-based GPR prediction

our method also boosts the inter-swath energy balancing by
exploiting the co-polarization channel. The employed weights
mask (I m ) contribute to reducing the multiplicative component
of the noise depicted in [6]. Because our denoising work�ow
harnesses the co-polarization product to enhance the cross-
polarization channel it may be only for dual-pol acquisitions.
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