
Inter-polarization Mapping via Gaussian Process
Regression for Sentinel-1 EW Denoising

Adrian Focsa1,2, Andrei Anghel1, Mihai Datcu1,3

1 CEOSpaceTech, University POLITEHNICA of Bucharest (UPB), Bucharest, Romania
2 Military Technical Academy ”Ferdinand I” (ATMFI), Bucharest, Romania

3 Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Wessling, Germany
Contact author e-mail: focsa.adrian@yahoo.com

Abstract—The Sentinel-1 SAR images acquired using the
TOPSAR modes i.e., IW and EW on cross-polarization are
significantly affected by the thermal noise on low-back-scattering
areas. For example, in the arctic and some desert zones both inter-
swath and inter-burst noise amplification occurs. In this paper we
propose a workflow for removing the thermal noise from Sentinel-
1 ground detected SAR images on low back-scattering conditions
by employing the co-polarization SAR image and the Gaussian
Process Regression. Our processing flow uses the noise vectors
provided in the European Space Agency (ESA) ground detected
product and scales them such that a slightly over-denoised image
is produced. Then, the Gaussian Process Regression is used to
map the co-polarization SAR image into the cross-polarization
SAR image. Prior to this step, a radiometric correction is applied
on the co-polarization data, since its pixel values are heavily
dependent on the incidence angle. Finally, the denoised cross-
polarization image is obtained as a linear combination between
the over-denoised version and the predicted image. Since, the
co-polarization channel is employed for the prediction of the
missing values in the cross-polarization channel there is no need
for co-registration and the denoising procedure is trustworthy.

Index Terms—TOPSAR denoising, Gaussian Process Regres-
sion, cross-polarization

I. INTRODUCTION

ESA Copernicus program comprises Sentinel-1 A/B, a pair
of polar orbit satellites equipped with C-band SAR sensors
able to map the Earth using 4 scanning modes in either single
or dual polarization: STRIPMAP, Interferometric Wide(IW),
ExtraWide (EW) and Wave Mode (WV). Among all prod-
ucts, under weak back-scattering conditions (e.g., calm water-
bodies, desert) the cross-polarization detected (Ground Range
Detected Magnitude (GRDM) products) TOPSAR images i.e.,
IW and EW are more affected by scalloping in the azimuth
direction and by the thermal noise in the range direction. Even
though starting with Instrument Processing Facility (IPF) 2.90
both azimuth and range noise vectors are provided in the
product ancillary files, the denoising method [1] based on (1)
may produce poor quality denoised images.

Id[ESA] = max(0, In −NESA) (1)

In (1), Id[ESA] suggests the denoised image obtained using
ESA algorithm [1] from the noisy (raw) GRDM intensity
image (In) and the noise vectors NESA.

(a) (b) (c)

Fig. 1: Sentinel-1 GRDM product example
S1A EW GRDM 1SDH 20210621T072157 20210621T072
257 038435 04890F A9C0 displayed in linear pixel units: a)
Co-polarization, b) Cross-polarization, c) Cross-polarization
SAR image denoised using [1]

The general idea behind the existing approaches that im-
prove [1] is depicted by (2) and consists in modifying the
available noise vectors(NESA) to be more consistent with
the measured noise floor. Thus, NESA may be transformed
(T (.)) (shifted [2] or modeled on intervals with exponential
functions [3]) then scaled via Kns. Furthermore, to preserve
the inter-swath boundaries continuity some offset coefficients
Kpb(power balancing) may be also employed.

Id[method] = In − (KnsT (NESA) +Kpb) (2)

Lee et. al [4] proposed a simplified approach compared
to [5] in two aspects: no offset parameter is needed for
correction and the scaling coefficient (Kns) is derived in
closed form solution (least squares estimation) using a single
image instead of using a collection of SAR images. The
denoising performance in [4] was evaluated through simulated
data. In [6] the thermal noise is considered to have an additive
and a multiplicative component. The removal of the latter is
the key for the enhancement of the textural characterization
of the SAR image.

In [2], the misfit between the noise vector provided by
ESA and the ones measured from data is modeled by a
spatial shift estimated maximizing the correlation (Pearson
correlation coefficient) to a vector called ”antenna range gain”
accounting for the antenna pattern and the range influence. In
[7] the TOPSAR denoising is performed in the wavelet domain
through a soft-thresholding processing. The profile correction
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step in [7] has similar effect as the power balancing coefficient
in [2], [5], [8] and it is computed from the image profile (range
projection). Inherently, the output from [7] has less details
since wavelet sub-bands are soft-thresholded.

Many approaches for the evaluation of the cross-polarization
noise reduction performance were assessed. In [8], the inter-
swath boundaries continuity together with a key-points match-
ing approach was investigated whereas in [5] an automatic K-
means clustering on Haralick texture features was performed.
Mascolo et. al [9] quantified the denoising performance
through Monte Carlo simulations.

As shown in Fig. 1c the denoising algorithm [1] reduces the
thermal noise from Fig. 1b. However, the average range pro-
files displayed in Fig. 2 reveal that the 2D noise field provided
by ESA is locally inconsistent. Therefore, the denoised product
is either over-denoised or under-denoised. These effects mostly
occur in the inter-swath regions.

Fig. 2: Average range projection over raw and ESA denoised
cross-polarization intensity image. Evidently, there are por-
tions in the range profile of the denoised image still positively
correlated to the range noise vectors

In this paper we propose a workflow for removing the
thermal noise from Sentinel-1 GRDM SAR images on low
back-scattering conditions by employing the co-polarization
SAR image and the Gaussian Process Regression (GPR)
[10]. Our method’s reliability is ensured by the fact that the
reconstruction of the pixels in the cross-polarization image
is performed with data recorded by the same sensor and no
additional co-registration processing is needed. The proposed
denoising procedure uses the noise vectors provided in the
product ancillary files and scales them such that a slightly over-
denoised image is produced using (1). Then the Gaussian Pro-
cess Regression [10] is used to map the co-polarization SAR
image into the cross-polarization SAR image. However, prior
to this step, the co-polarization data is applied a radiometric
correction, since its pixel values are heavily dependent on the
incidence angle. Finally, the denoised cross-polarization image
is obtained as a linear combination between the over-denoised
version and the GPR predicted image. The weights map is
obtained through filtering with a circular kernel the binary
map containing 1’s at the positions where ESA denoising
method (1), before applying max operator, resulted in a null
or negative pixels values.

The rest of the paper is structured as follows. Section II
presents the proposed processing flow and introduces the GPR

key-points in sub-section II-A and the radiometric correction in
sub-section II-B. The proposed denoising procedure is detailed
in sub-section II. In Section III, the denoising results are
displayed and discussed whereas the conclusions are drawn
in Section IV.

II. PROPOSED WORKFLOW

The proposed denoising processing flow is based on the
recovery of the data lost after applying (1) with data inferred
through GPR. As shown in Fig. 3, first, both co-polarized and
cross-polarized GRDM SAR images are corrected using [1].
Then, the incidence angle compensation is applied. This step is
depicted in sub-section II-B. Further, using reliable areas (high

Fig. 3: Proposed denoising workflow

SNNR defined in [5]) in each the dual-pol SAR images the
kernel-based GPR model is trained. The training process learns
the physical signature translation from co-polarized data to
cross-polarized data. The input data is represented by the ESA
denoised - incidence angle corrected cross-polarized pixels
whereas the output is the corresponding co-polarized pixels.

Id[proposed] = Im × Id[ESA′] + (1− Im)× I[GPR] (3)

In (3), the final denoised image is obtained by combining
the GPR prediction I[GPR] with the output obtained using (2)
with Kpb = 0, T -identity transformation and Kns chosen such
that an over-denoised version (Id[ESA′]) of the raw image is
obtained. The two components are weighted using the mask
Im. The mask is obtained in a two step process. When the
subtraction of the 2D noise field from the noisy image is
performed, the negative and null values positions are stored
and a new image containing ones on those positions and zeros
otherwise is formed. Then, this binary mask is ’smeared’ using
a 7×7 circular filtering kernel resulting the final weights mask.

A. Gaussian Process Regression

Even though Gaussian Process Regression is a powerful
Bayesian prediction tool, it has been presented relatively
recently [10] as a Machine Learning technique. GPR was
previously known as Kriging interpolation. It has been suc-
cessfully employed for physical parameters mapping in the
context of polarimetric SAR data [11].

y = f(X) + ε, ε ∼ N (0, σIn) (4)

The nonlinear regression model for a given training set
D (y,X) is depicted by (4). Given the observed input data
set X = {x1,x2, ...,xN} and the corresponding output set
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y = {y1, y2, ..., yN} with xi ∈ RD and yi ∈ R, a multivariate
Gaussian distribution models the function values. In Section
III, the presented results are obtained using an one-to-one
mapping (D = 1).

p
(
ytest|Xtest,D

)
= N

(
ytest|µ∗,σ

2
∗
)

(5)

The predicted values and their corresponding variances
are analytically derived from the posterior distribution (5)
associated with the test outputs ytest.

µ∗ =KT
f∗
(
Kff + σ2IN

)−1
y (6)

In (6) and (7), Kf∗ is the covariance matrix between
the training and the test points, Kff is the train samples
covariance matrix whereas K∗∗ represents the test samples
covariance matrix.

σ2
∗ = σ2 +K∗∗ −KT

f∗
(
Kff + σ2IN

)−1
Kf∗ (7)

In the experiments presented in Section III we have used
the squared exponential kernel defined in (8).

k(xi,xj) = σ2
k exp

(
−1

2

N∑
l=1

(xil − xjl)2

λk

)
(8)

In (8), the hyper-parameters σk and λk model the bell-like
shape of the kernel and implicitly the smoothness of the
predictor f .

B. Incidence angle compensation

As is the case of TOPSAR mode, for wide incidence
angle range acquisitions, many SAR image applications need
a correction pre-processing step. In our case, the incidence
angle compensation purpose is to reduce the incidence angle
dependence of the back-scattering energy not only for the
co-polarization SAR image, for which this effect is obvious
[see Fig. 1a] but also for the cross-polarization image prior to
feeding them to GPR.

(a) (b)

Fig. 4: Incidence angle compensation profile estimation: a)
example-1 and b) example-2

The most common techniques for incidence angle compen-
sation are linear and n-th power cosine correction. However,
as noted in [12]. these approaches may not comply with
all scanning scenarios and illuminated scenes. Therefore, we

(a) (b)

(c) (d)

Fig. 5: Incidence angle compensation examples: a) Raw co-
polarization GRDM image example-1, b) Corrected version
of b), c) Raw co-polarization GRDM image example-2, d)
Corrected version of c)

propose an new compensation algorithm efficient for the dual-
pol data used in this study. The processing steps need to
perform the incidence angle compensation are listed below:

1. Compute the image profile (range) only for pixels obeying
SNNRcross−pol < 3dB;

2. Select reliable regions from profile (mid swath intervals
for the sub-swaths 2-5 and the highest SNNR regions from
the first sub-swath)

3. Fit a polynomial ratio function for the first two sub-swaths
(the exponential decay function fits less) and a first order poly-
nomial for the last 3 sub-swaths. The discontinuity between
the two regression parts is treated by adding/subtracting half
of the offset corresponding to the intersection abscissa point.

4. Linearly fit the obtained regression curve to the raw range
profile.

The first step avoids the dependence of the range profile of
strong back-scattering targets. The second step is useful such
that the sub-swath boundary regions to be discarded since they
are more likely to be affected by over/under-denoising.

The range profiles used to compensate the incidence angle
dependence are highlighted in Fig. 4 whereas the raw and the
corrected versions of the cross-polarization images is shown
in Fig. 5.

III. RESULTS

In this section the denoised images resulted by applying the
proposed denoising workflow are displayed and compared to
the ones obtained by [1]. The four denoised example images
correspond to the products (example-1,...,example-4) listed
below:

• S1A EW GRDM 1SDH 20210621T072157 20210621T072257 038435 04890F A9C0

• S1A EW GRDM 1SDH 20210620T064151 20210620T064251 038420 0488A2 65A8

• S1B EW GRDM 1SDH 20190124T074426 20190124T074526 014633 01B458 E8F5

• S1A EW GRDM 1SDH 20210307T070530 20210307T070630 036889 0456BB 881C
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(a) example-1: ESA method (b) example-1: proposed

(c) example-2: ESA method (d) example-2: proposed

(e) example-3: ESA method (f) example-3: proposed

(g) example-4: ESA method (h) example-4: proposed

Fig. 6: Comparative results obtained with the method de-
scribed in [1] called ESA method and the proposed one. The
mean range profiles overlay the results.

The weights masks resulted for the displayed examples in
Fig. 7 are shown in Fig. 6. We have used Kns = 1.2 as scaling
factor to produce the over-denoised images in the presented
examples. Visual proof that the proposed method overcomes
the limitations of the one depicted in [1] is provided in Fig. 7.
Moreover, Fig. 6f presents a result over a product also analyzed
in [7]. As opposed to [7], our method manages to preserve
more details in the open water region.

IV. CONCLUSIONS

In this paper we proposed a technique for reducing the
thermal noise in Sentinel-1 EW GRDM products recorded over
weak back-scattering scenarios. To our knowledge, it is the
first denoising procedure to benefit from the co-polarization
image. Beside the visual enhancement of the denoised image,
the average range profiles (red curves in Fig. 6) proves that

(a) Im: example-1 (b) Im: example-2 (c) Im: example-3 (d) Im: example-4

Fig. 7: The masks employed in the proposed denoising process
for the four examples in Fig. 6. As expected, the pixels located
in the inter-swath/inter-burst regions are more likely to be
replaced by the kernel-based GPR prediction

our method also boosts the inter-swath energy balancing by
exploiting the co-polarization channel. The employed weights
mask (Im) contribute to reducing the multiplicative component
of the noise depicted in [6]. Because our denoising workflow
harnesses the co-polarization product to enhance the cross-
polarization channel it may be only for dual-pol acquisitions.
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