Focsa, Adrian und Anghel, Andrei und Datcu, Mihai (2022) Inter-polarization Mapping via Gaussian Process Regression for Sentinel-1 EW Denoising. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 2063-2066. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883828.
PDF
7MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9883828
Kurzfassung
The Sentinel-1 SAR images acquired using the TOPSAR modes i.e., IW and EW on cross-polarization are significantly affected by the thermal noise on low-back-scattering areas. For example, in the arctic and some desert zones both inter- swath and inter-burst noise amplification occurs. In this paper we propose a workflow for removing the thermal noise from Sentinel-1 ground detected SAR images on low back-scattering conditions by employing the co-polarization SAR image and the Gaussian Process Regression. Our processing flow uses the noise vectors provided in the European Space Agency (ESA) ground detected product and scales them such that a slightly over-denoised image is produced. Then, the Gaussian Process Regression is used to map the co-polarization SAR image into the cross-polarization SAR image. Prior to this step, a radiometric correction is applied on the co-polarization data, since its pixel values are heavily dependent on the incidence angle. Finally, the denoised cross-polarization image is obtained as a linear combination between the over-denoised version and the predicted image. Since, the co-polarization channel is employed for the prediction of the missing values in the cross-polarization channel there is no need for co-registration and the de noising procedure is trustworthy.
elib-URL des Eintrags: | https://elib.dlr.de/193337/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Inter-polarization Mapping via Gaussian Process Regression for Sentinel-1 EW Denoising | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883828 | ||||||||||||||||
Seitenbereich: | Seiten 2063-2066 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | TOPSAR denoising, Gaussian Process Regression, cross-polarization | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - SAR-Methoden | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Hinterlegt am: | 16 Jan 2023 08:54 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags