Asiyabi, Reza Mohammadi and Datcu, Mihai and Nies, Holger and Anghel, Andrei (2022) Complex-Valued vs. Real-Valued Convolutional Neural Network for Polsar Data Classification. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 421-424. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884081.
PDF
653kB |
Official URL: https://ieeexplore.ieee.org/document/9884081
Abstract
Despite the state-of-the-art performance of the deep learning methods for Synthetic Aperture Radar (SAR) data classification, the Real-Valued (RV) networks neglect the phase component of the Complex-Valued (CV) SAR data and lose a lot of useful information. CV deep architectures have been developed in the recent years to exploit the amplitude and phase components of the CV data, in different fields. However, the superiority of CV models over RV models are proved to be different for each application, and more investigation into the advantages and disadvantages of implementing CV models for SAR data classification is necessary. In this study, the performance of the CV Convolutional Neural Network (CV-CNN) for Polarimetric SAR (PolSAR) data classification is compared with its RV equivalent network, in different contexts.
Item URL in elib: | https://elib.dlr.de/193336/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Complex-Valued vs. Real-Valued Convolutional Neural Network for Polsar Data Classification | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884081 | ||||||||||||||||||||
Page Range: | pp. 421-424 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Complex-valued CNN, deep learning, Remote sensing, Classification, PolSAR | ||||||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Deposited On: | 16 Jan 2023 08:53 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page