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ABSTRACT 

 

Despite the state-of-the-art performance of the deep learning 

methods for Synthetic Aperture Radar (SAR) data 

classification, the Real-Valued (RV) networks neglect the 

phase component of the Complex-Valued (CV) SAR data and 

lose a lot of useful information. CV deep architectures have 

been developed in the recent years to exploit the amplitude 

and phase components of the CV data, in different fields. 

However, the superiority of CV models over RV models are 

proved to be different for each application, and more 

investigation into the advantages and disadvantages of 

implementing CV models for SAR data classification is 

necessary. In this study, the performance of the CV 

Convolutional Neural Network (CV-CNN) for Polarimetric 

SAR (PolSAR) data classification is compared with its RV 

equivalent network, in different contexts. 

 

Index Terms— Complex-valued CNN, deep learning, 

Remote sensing, Classification, PolSAR 

 

1. INTRODUCTION 

 

The very large volume of the available data and the 

remarkable results of the deep learning methods have 

encouraged numerous studies to apply deep architectures for 

various applications. In remote sensing, several Earth 

Observation (EO) satellites are launched and acquire 

hundreds of terabytes of data every day, with diverse 

characteristics, e.g., Multi/hyper-spectral, Synthetic Aperture 

Radar (SAR), LIDAR, scatterometry, (very) high-resolution, 

wide-coverage, time series data, and many more varying 

properties [1]. A great number of studies have focused on 

utilizing deep learning methods for various remote sensing 

applications, and obtained state-of-the-art results [2]–[4]. 

Concurrently, unprecedented advancements of SAR 

sensors, which provided (very) high resolution SAR images 

in various imaging modes and polarization channels, and the 

unique capabilities of these data (e.g., day and night imagery 

and (almost) independent of atmospheric condition) opened 

up several opportunities for different applications. Many 

researchers conducted experiments to apply deep learning 

models to SAR data processing [5]–[7]. However, SAR data 

are in complex-domain by nature and processing them with 

real-valued operators will neglect the phase component of the 

data and utilize only the amplitude information [8]. Most of 

the previous attempts to develop deep architectures for SAR 

data processing have neglected the phase component of the 

data. In addition to the SAR community, there are several 

fields (e.g., communication, sonar, biomedicine, seismology, 

and physics) [9] that are using complex filtering operations 

and there is a huge interest in these communities for complex-

valued operators. Consequently, a number of attempts for 

complex-valued deep network’s development have been 

carried out in recent years [10]–[12]. 

A few studies proposed complex-valued deep 

architectures for SAR data processing, as well. Zhang et al. 

[8] proposed a Complex-Valued Convolutional Neural 

Network (CV-CNN) for Polarimetric SAR (PolSAR) data 

classification. In another study, Shang et al. [13] proposed a 

Complex-Valued Convolutional Autoencoder (CV-CAE) 

and reconstructed the PolSAR image patches. Later, the 

bottleneck features of the CV-CAE are extracted and used in 

a one layer fully connected classification network. Moreover, 

Zhang et al. [14] proposed a novel CV-CNN architecture, 

called “SAR4LCZ-Net”, for Local Climate Zones (LCZ) 

classification in Gaofen-3 quad-pol SAR images. 

Furthermore, Sun et al. [15] proposed a complex-valued 

generative adversarial network (GAN) and utilized a semi-

supervised classification procedure for PolSAR data 

classification. 

One of the major problems for complex-valued neural 

network utilization, is the implementation of the network. 

Several conversions from real-valued mathematical operators 

into the complex domain have been proposed [8], [13], [16], 

but most of the well-known libraries and toolboxes for deep 

network’s implementation, such as TensorFlow and PyTorch 

libraries in python environment, are defined for real-valued 

networks. Barrachina et al. [16] have developed a library for 

the Complex-Valued Neural Network (CVNN), based on the 

TensorFlow library in python environment. 

In this paper, the CVNN library, developed by [16], is 

utilized to define a Complex-Valued Convolutional Neural 

Network (CV-CNN) for PolSAR data classification, and the 
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classification is compared to the equivalent Real-Valued 

CNN (RV-CNN) in different contexts. Comprehensive 

comparisons between the two models are carried out in terms 

of the model convergence and trainset size, classification 

accuracy, and the computational efficiency. The rest of this 

paper is organized as follows: a brief mathematical 

background of the complex-valued functions is given in 

section 2. Section 3 consists of the dataset description, model 

architecture, and the experimental results. The comparisons 

between the complex- and real-valued networks is carried out 

in section 4, and the study in concluded in section 5. 

 

2. MATHEMATICAL BACKGROUND  

 

All of the weights and different functions in the CV-CNN 

should be in complex-domain, to be able to handle and 

preserve the structure of the complex-valued data. In order to 

train the CV-CNN, using the complex-valued 

backpropagation, the complex gradient has to be defined. 

According to the Wirtinger calculus [17], if 𝑧 is a complex 

variable, 𝑧 = 𝑥 + 𝑗𝑦 ∈ ℂ, (𝑥, 𝑦) ∈ ℝ2, the partial derivatives 

of a complex function 𝑓(𝑧) with respect to 𝑧 and 𝑧̅ are as 

shown in equation 1: 
𝜕𝑓

𝜕𝑧
≜

1

2
(

𝜕𝑓

𝜕𝑥
− 𝑗

𝜕𝑓

𝜕𝑦
),     

𝜕𝑓

𝜕𝑧̅
≜

1

2
(

𝜕𝑓

𝜕𝑥
+ 𝑗

𝜕𝑓

𝜕𝑦
)         (1). 

Later, the complex gradient can be defined as equation (2): 

∇𝑧𝑓 = 2
𝜕𝑓

𝜕𝑧̅
                             (2). 

Despite the complex-valued weights and functions, the 

loss function has to be real-valued to reduce the empirical 

risks during the implementation [16]. For the real-valued loss 

function ℒ: ℂ → ℝ, the complex derivative of ℒ with any 

complex function, 𝑔: ℂ → ℂ where 𝑔(𝑧) = 𝑟(𝑧) + 𝑗𝑠(𝑧) can 

be computed according to the chain rule as shown in equation 

(3): 
𝜕ℒ ∘ 𝑔

𝜕𝑧̅
=

𝜕ℒ

𝜕𝑟
 
𝜕𝑟

𝜕𝑧̅
+

𝜕ℒ

𝜕𝑠
 
𝜕𝑠

𝜕𝑧̅
                   (3). 

And the complex backpropagation can be implemented, 

using the equations (2) and (3). 

 

3. EXPERIMENTAL RESULTS 

 

The covariance matrix 𝐶 contains the polarization 

information of the SAR measurements and is authenticated as 

a suitable representation of the PolSAR data in previous 

studies [8], [13], [18]. The diagonal elements of the 

covariance matrix are real-valued, however the other 

elements are complex-valued and conjugated at the 

symmetric position of the main diagonal. As a result, the three 

real-valued and three complex-valued elements of the upper 

triangle of the covariance matrix (i.e., 𝐶11, 𝐶22, C33, C12,
C13, and C23, 6 channels) are used as the input features of 

the models. A PolSAR image, acquired by the NASA/JPL 

AirSAR system over an agricultural area in the Flevoland, 

Netherlands with the size of 750×1024 is used in this study. 

The Pauli RGB image and the corresponding Ground Truth 

(GT) map, with 15 semantic classes, are shown in Figure 1 

(a) and (b), respectively. 

The main purpose of this study is to compare the 

utilization of phase and amplitude components of the SAR 

data through complex-valued deep architectures with the 

conventional procedure, which only considers the amplitude 

components of the SAR data in real-valued networks. In order 

to preserve the equivalency between the networks, the same 

architecture is used for the CV-CNN and RV-CNN, 

illustrated in Figure 2. A 7×7 patch around each pixel is used 

as the representor of the pixel and the semantic label is 

assigned to the central pixel of the patch. By sliding the 

window through the whole image with one-pixel steps, a 

pixel-wise classification is achieved. 
 

  
(a)  (b) 

  

(c) (d) 

Stem Beans Peas Forest Lucerne Wheat 

Beet Potatoes Bare Soil Grass Rapeseed 

Barley Wheat 2 Wheat 3 Water Buildings 

Figure 1. (a) Pauli RGB composite and (b) the Ground 

Truth map of the Flevoland PolSAR data. White color 

represents unlabeled pixels. And the classified maps with 

the (c) CV-CNN and (d) RV-CNN models. 
 

In the architecture of the models, as illustrated in Figure 

2, a convolutional layer with the kernel size 3×3, stride 1, and 

ReLU activation function is applied to the input (i.e., the 

7×7×6 patch), which resulted in twelve 7×7 feature maps. An 

average pooling with the kernel size 2×2 is applied to the 

feature maps and reduced the size to 3×3 patches. Another 

similar convolutional layer is applied to achieve eighteen 3×3 

feature maps. Because of the small size of the input patch, 

zero padding is applied in each convolution layer. Later the 

feature maps are flattened and a vector with 162 features is 

achieved. Two fully connected layers with ReLU activation 

functions are used to reduce the size of the vector to 80 and 

40, respectively. Finally, a fully connected layer with 

absolute value activation function is used to obtain the output 

vector with the size of 15 (i.e., number of the semantic classes 

in the dataset). Figure 1 (c) and (d) illustrate the classified 

maps with the CV-CNN and RV-CNN models, respectively. 
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Figure 2. Architecture of the models. In the CV-CNN, all of the components of the model including the convolutional, 

pooling and fully connected layers are in complex-domain. 

4. COMPARISON AND DISCUSSION 

 

In this section, the performance of the CV-CNN and RV-

CNN are compared in terms of the model convergence with 

different trainset sizes, classification accuracy, and the 

computational efficiency of the models. 

 

4.1. Model convergence and trainset size  

 

In order to compare the convergence rate of the models, the 

size of the trainset is changed between 5% and 50% of the GT 

and the models are trained with 100 epochs. Figure 3 

illustrates the average testing accuracy of the models for each 

10 epochs. For better visualization, only the accuracies above 

80% are shown. As it is obvious in Figure 3, the test accuracy 

of the CV model with only 5% trainset size reaches about 

92% and 94% after 50 and 100 epochs, respectively. 

However, the RV model needed at least 30% trainset size for 

the similar performance. With 10% trainset size, CV model 

achieves more than 95% testing accuracy, while the RV 

model did not reach that performance, even with 50% trainset 

size. CV-CNN has a remarkable testing accuracy of more 

than 98% with 50% trainset size. 
 

 
Figure 3. Average test accuracies for every 10 epochs with 

different training set sizes for both CV-CNN and RV-CNN 

models. 

 

4.2. Classification Accuracy 

 

With 10% trainset size, the CV-CNN and RV-CNN models 

achieved more than 95% and 90% Overall Accuracies (OA) 

for the test set, respectively. The classification accuracies for 

the 15 semantic classes are shown in Table 1. Only in two 

classes, Forest and Bare soil, the RV model achieved higher 

classification accuracies, however, the accuracy of the CV-

CNN is remarkably higher in other 13 semantic classes. The 

highest classification accuracy for one semantic class is 

achieved by the CV model for water class, with more than 

99% accuracy, about 9% higher than RV-CNN. The lowest 

classification accuracy is observed in the Wheat 2 semantic 

class for the RV model with less than 80%, while the CV-

CNN increased the accuracy of this class with about 15 %. 
 

Table 1. Classification accuracies 

Class CV-CNN RV-CNN 

Stem Beans 97.12% 94.21% 

Peas 95.83% 94.47% 

Forest 95.53% 97.54% 

Lucerne 96.61% 91.22% 

Wheat 92.22% 91.01% 

Beet 94.08% 89.42% 

Potatoes 95.57% 87.95% 

Bare Soil 95.53% 95.88% 

Grass 88.81% 81.79% 

Rapeseed 95.15% 89.45% 

Barley 99.29% 94.28% 

Wheat 2 94.05% 79.23% 

Wheat 3 96.35% 90.78% 

Water 99.39% 90.54% 

Buildings 96.14% 94.22% 

OA 95.60% 90.36% 
 

4.3. Computational efficiency 
 

Despite the superior performance, CV-CNN has two times 

more trainable parameters than RV-CNN, 39,034 and 19,517 

parameters, respectively, and as a result the training time is 

much higher for the CV model. However, CV model reaches 

higher OA with less training epochs. Consequently. One can 

argue that the CV model can reach a target OA faster, despite 

80%
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the higher trainable parameters. For instance, for the target 

OA of more than 90%, CV model needs 17 epochs and 

173.32 seconds training time, while the RV model needs 39 

epochs and 192.26 seconds training time. 
 

5. CONCLUSION 
 

A comparison between the CV-CNN and RV-CNN for 

PolSAR data classification is carried out in this study. The 

obtained results, demonstrated the superiority of the CV 

model, in terms of the better classified map and higher 

classification accuracy. However, the CV model has two 

times more trainable parameters and requires more training 

time. But it can achieve the target OA with smaller trainset 

size and less training epochs, which makes it more efficient 

than the RV equivalent network, in many case studies. 

In conclusion, using the phase component of the PolSAR 

data in CV deep architectures can boost the classification 

results, and will require smaller trainset and less training 

epochs and time. In the future studies, the effects of a CV and 

RV autoencoder as the latent feature extractor before the 

CNN models should be investigated. 
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