Asiyabi, Reza Mohammadi und Datcu, Mihai und Nies, Holger und Anghel, Andrei (2022) Complex-Valued vs. Real-Valued Convolutional Neural Network for Polsar Data Classification. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 421-424. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884081.
PDF
653kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9884081
Kurzfassung
Despite the state-of-the-art performance of the deep learning methods for Synthetic Aperture Radar (SAR) data classification, the Real-Valued (RV) networks neglect the phase component of the Complex-Valued (CV) SAR data and lose a lot of useful information. CV deep architectures have been developed in the recent years to exploit the amplitude and phase components of the CV data, in different fields. However, the superiority of CV models over RV models are proved to be different for each application, and more investigation into the advantages and disadvantages of implementing CV models for SAR data classification is necessary. In this study, the performance of the CV Convolutional Neural Network (CV-CNN) for Polarimetric SAR (PolSAR) data classification is compared with its RV equivalent network, in different contexts.
elib-URL des Eintrags: | https://elib.dlr.de/193336/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Complex-Valued vs. Real-Valued Convolutional Neural Network for Polsar Data Classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884081 | ||||||||||||||||||||
Seitenbereich: | Seiten 421-424 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Complex-valued CNN, deep learning, Remote sensing, Classification, PolSAR | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Hinterlegt am: | 16 Jan 2023 08:53 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags