Heidler, Konrad and Mou, LiChao and Löbel, Erik and Scheinert, Mirko and Lefèvre, Sébastien and Zhu, Xiao Xiang (2022) Deep Active Contour Models for Delineating Glacier Calving Fronts. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4490-4493. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884819.
PDF
1MB |
Official URL: https://ieeexplore.ieee.org/document/9884819
Abstract
We present a deep active contour model for detecting and delineating glacier calving fronts from satellite imagery. Contrary to existing deep learning-based calving front detectors, our model does not perform an intermediate segmentation or pixel-wise edge detection, but instead directly predicts the contour parametrized by a fixed number of vertices. The model works by first deriving feature maps from an input image, and then updating an initial contour in an iterative fashion. Evaluating on the CALFIN dataset, which maps calving fronts in Greenland, our model outperforms existing approaches. Code for the experiments and animated predictions can be found at https://github.com/khdlr/deep-acm
Item URL in elib: | https://elib.dlr.de/193327/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Title: | Deep Active Contour Models for Delineating Glacier Calving Fronts | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884819 | ||||||||||||||||||||||||||||
Page Range: | pp. 4490-4493 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | glacier calving; contour | ||||||||||||||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||||||
Deposited On: | 16 Jan 2023 08:45 | ||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page