
DEEP ACTIVE CONTOUR MODELS FOR DELINEATING GLACIER CALVING FRONTS

Konrad Heidler 1,2, Lichao Mou 1,2, Erik Loebel 3, Mirko Scheinert 3, Sébastien Lefèvre 4, Xiao Xiang Zhu 1,2

1 Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Weßling, Germany
2 Data Science in Earth Observation, Technical University of Munich (TUM), Munich, Germany

3 Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany
4 IRISA UMR 6074, Université Bretagne Sud, Vannes, France

ABSTRACT

We present a deep active contour model for detecting and de-
lineating glacier calving fronts from satellite imagery. Con-
trary to existing deep learning-based calving front detectors,
our model does not perform an intermediate segmentation or
pixel-wise edge detection, but instead directly predicts the
contour parametrized by a fixed number of vertices. The
model works by first deriving feature maps from an input
image, and then updating an initial contour in an iterative
fashion. Evaluating on the CALFIN dataset, which maps
calving fronts in Greenland, our model outperforms existing
approaches.

Code for the experiments and animated predictions can be
found at https://github.com/khdlr/deep-acm

Index Terms— Edge detection, Greenland, glacier front

1. INTRODUCTION

The location of marine-terminating glacier fronts is an impor-
tant indicator for dynamic glacier changes and their response
to long-term climate developments. Monitoring these front
lines with deep learning has been studied both as a segmenta-
tion task, as well as an edge detection task [1].

With deep learning methods on the rise, the task has been
approached using specialized convolutional neural networks
(CNNs) for image segmentation. While these have proven vi-
able for delineating calving fronts [2, 3], they do not solve
the task directly. Instead, they take a detour by first predict-
ing segmentation maps as a proxy for the actual delineation.
In line with this observation, recent works show that using
CNNs to directly classify edge pixels rather than segmenta-
tion masks is a promising approach [4, 5].

The detection of contours or edges is a task that predates
the deep learning era. One way of formulating this task is as a
dense prediction task, where each pixel is classified as either
an “edge pixel” or a “non-edge pixel”. Traditionally, simple
local methods like the Roberts operator [6] have been used
for such tasks. More recently, deep CNNs have shown to be
very capable edge detectors. By building feature pyramids of

increasing abstraction, they are better able to differentiate be-
tween true edges and noisy textures. One notable early work
in this direction is holistically-nested edge detection [7].

In contrast to these works, we present a delineation frame-
work that directly derives an explicit delineation from the in-
put imagery. Inspired by Active Contour Models (ACMs) or
Snakes [8], our model works by iteratively deforming an ini-
tial curve. For the task of building footprint detection, Mar-
cos et al. [9] have proposed to predict ACM parameters us-
ing a CNN and backpropagate the error through the ACM
iteration. In an inspiring study by Peng et al. [10], the au-
thors showed that the snake evolution itself can be learned
using a one-dimensional CNN, implementing a fully train-
able Deep Active Contour model for instance segmentation.
Transferring this idea to the delineation of glacier fronts re-
quires great care, as the task is fundamentally different from
instance segmentation in a number of ways. Instead of small,
self-contained objects, glacier front detection requires draw-
ing a boundary between two classes – glacier and ocean –
which extend far beyond the given image. Further, the com-
plex shape of calving fronts requires a more sophisticated loss
function than the one used in [10].

Convinced by the theoretical advantages of an explicit
curve-based delineation approach, we set out to devise such
a framework for the delineation of glacier frontlines. The re-
sult is an end-to-end trainable model that first calculates high
level features using a two-dimensional CNN backbone. In a
second stage, an initial curve is iteratively deformed by a one-
dimensional CNN that samples values from this feature map.
The model is then trained to match the true glacier frontlines
with its predictions.

2. METHOD

Active contour models [8] work directly on the brightness
values of the given image. Therefore the method is very
dependent on local contrast, and has no natural extension
to RGB imagery, let alone multi- or hyperspectral imagery.
Deep CNNs on the other hand use a large number of filters
to extract meaningful information from the raw image pixels.

4490978-1-6654-2792-0/22/$31.00 ©2022 IEEE IGARSS 2022

IG
AR

SS
 2

02
2

- 2
02

2
IE

EE
 In

te
rn

at
io

na
l G

eo
sc

ie
nc

e
an

d
Re

m
ot

e
Se

ns
in

g
Sy

m
po

siu
m

 |
 9

78
-1

-6
65

4-
27

92
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IG
AR

SS
46

83
4.

20
22

.9
88

48
19

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on January 13,2023 at 17:08:20 UTC from IEEE Xplore. Restrictions apply.

2D CNN
Backbone

Feature Map

Snake Head

Input Image Final Prediction

Offsets

1
D

 C
N

N
Reproject

Fig. 1. Overview of our proposed model architecture. After
extracting a feature map using the backbone network, features
are extracted at initial vertex positions. Then, the snake head
calculates offsets for each vertex based on these features. This
step is repeated 4 times.

Combining the strengths of these two approaches therefore
seems like a natural fit.

In their original formulation, ACMs iteratively evolve a
curve by minimizing an energy functional. It is worthwhile to
explore the possibilities of putting these two approaches back-
to-back in a model that first derives features using a CNN and
then applies an ACM to delineate regions of interest on these
feature maps. This framework can then be trained end-to-end
by backpropagating the loss through the ACM iterations [9].

In this simple concatenation of CNN and ACM, the transi-
tion between the two models quickly becomes an information
bottleneck. While the CNN can output very rich feature maps,
the ACM can only take a small number of features as its input.
In order to remove this bottleneck, we replace the traditional
snake iteration by a one-dimensional CNN, inspired by the
model design proposed in [10].

2.1. Fully Convolutional ACM

Instead of relying on hand-crafted energy terms, our model
learns the optimal deformations for a contour directly from
the data.

2.1.1. Backbone

Like Peng et al. [10], we start by extracting two-dimensional
feature maps using a convolutional backbone network. This
step essentially replaces hand-crafted feature extraction meth-
ods that are sometimes applied prior to an ACM model. While

a conventional ACM only samples a single scalar value per
vertex, our method samples an entire feature vector of ar-
bitrary size for each vertex, which drastically increases the
amount of information available to the snake evolution.

The architecture used for the backbone model is an Xcep-
tion network [11]. We find in our experiments, that this
greatly improves training stability compared to the more pop-
ular ResNet architectures, which we attribute to the extensive
use of depth-wise convolutions in the Xception architecture.

2.1.2. Snake Head

A critical step for the deep ACM is the transition from two-
dimensional imagery to the output curve, which is a one-
dimensional sequence of vertices. For each vertex in the
current contour, the corresponding features are extracted
at the vertex location via bilinear sampling. Then, a one-
dimensional CNN is applied to the sequence of vertices in
order to predict an offset for each vertex. After applying
these offsets, the process of sampling and offsetting is re-
peated. In our experiments, we find that 4 iterations are
enough to warrant satisfactory results.

The snake head can therefore also be viewed as a recurrent
neural network, where the vertex locations are the model’s
recurrent state. Over the iteration, this state is updated and
modified until arriving at the final output.

2.2. Reparametrization-Aware Objective Function

A simple method of training this model is to chose a fixed
parametrization of the ground truth frontline represented by
N vertices wi and then minimizing the squared sum of the
pairwise distances:

L(v, w) =
∑
i

∥vi − wi∥22 (1)

However, the model has no way of knowing how the orig-
inal parametrization wi was chosen, and will therefore be
penalized even when it predicts the right curve in a wrong
parametrization. This issue becomes particularly apparent
with the complex outline shapes of glacier frontlines.

Similar issues have been studied in works on timeseries,
where the general shape of the sequence is often more im-
portant than the exact location of the peaks. For this set-
ting, Sakoe and Chiba [13] proposed a method for comparing
timeseries that addresses these matters, called Dynamic Time
Warping (DTW). It works by re-aligning two timeseries to
match each other as closely as possible, and then calculating
a distance based on this alignment. More formally, for two
sequences vi and wj , the DTW loss is defined as

LDTW(v, w) = min
(ik,jk)∈K

∑
k

d(vik , wjk) , (2)

where K denotes the set of all possible re-alignments (ik, jk)
of the two sequences which are non-decreasing and injective.

4491

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on January 13,2023 at 17:08:20 UTC from IEEE Xplore. Restrictions apply.

Table 1. Model Comparison on CALFIN Test Set

Model Forward MAE Backward MAE Forward RMSE Backward RMSE

UNet [12] 173 m 175 m 248 m 260 m
CALFIN-NN [5] 103 m 115 m 163 m 189 m
Deep ACM (ours) 95 m 111 m 146 m 171 m

Forward = Predicted vertices to ground truth Backward = Ground truth vertices to predicted edge

The choice of the distance measure d in eq. 2 is arbitrary. For
our use-case, we set d(v, w) = ∥v − w∥22.

DTW can also be understood as searching for a minimal-
cost path from the top left corner to the bottom right corner of
the distance matrix Dij = d(vi, wj). Dynamic programming
is an efficient way of speeding up the calculation of DTW
without explicitly evaluating all possible assignments.

For deep learning purposes however, using DTW directly
as a loss function is not optimal, as this dissimilarity mea-
sure is not differentiable everywhere and the gradient is only
backpropagated through the single optimal path. In order to
improve upon these shortcomings, Cuturi and Blondel [14]
formulate SoftDTW, which calculates a smooth approxima-
tion of DTW. This is achieved by replacing the minimum op-
erator in eq. 2 with a softmin operator, which is defined by

softminγ(x1, . . . , xn) = −γ log

n∑
k=1

exp(−xk/γ) . (3)

The smoothing parameter γ determines the “softness” of the
approximation. In the limit γ → 0, the regular minimum
operator is recovered. In our experiments, we observed the
best results when setting γ = 0.001.

3. EXPERIMENTS & RESULTS

The Calving Front Machine (CALFIN) dataset introduced by
Cheng et al. [5] provides a diverse benchmark of calving front
locations, as well as an extensive test set. The training dataset
contains near-infrared optical data for 1541 Landsat scenes
from 1972 to 2019, covering 66 Greenlandic glaciers. To fur-
ther encourage the model to generalize to other modalities, it
also conains 232 single-polarization Sentinel-1 C-band SAR
scenes from Antarctica. The corresponding validation dataset
consists of 162 Landsat panchromatic scenes. For all of these
scenes, manually delineated calving fronts are available.

3.1. Evaluated Models

On this dataset, we train and evaluate our proposed model as
well as two competing models, namely a UNet model [12], as
well as the CALFIN-NN model presented in [5]. The compar-
ison to the latter is particularly interesting, as it was developed
specifically for the dataset used, and incorporates a pixel-wise
edge detection. We compare the frontlines obtained from our
model to those obtained from the other models in table 1.

3.2. Training Details

All models were trained on the dataset for 500 epochs with
a batch size of 16 on an NVIDIA GeForce RTX 3090. Op-
timization was done using an Adam optimizer with hyperpa-
rameters β1 = 0.5, β2 = 0.9 and an initial learning rate of
10−3, decaying on a cosine schedule to 10−5 over 500 epochs.

While the performance of the original ACM is highly de-
pendent on the initialization of the snake [8], we find that the
deep ACM does not suffer from this limitation. In fact, the
model will find the right contours even when initializing all
curve vertices at the center of the image. To avoid leaking
information about the ground truth to the model, all results
presented in this paper were obtained using this constant ini-
tialization scheme.

Regarding the snake head, we find that the model trains
more efficiently when stopping the gradients after applying
the offsets to the vertices. At the same time, deep supervision
is employed on the intermediate predictions, which means
that additional loss terms encourage the model to match the
ground truth more closely in earlier iterations. As can be seen
in Fig. 2, the model already figures out fairly good delineation
after the first step, and can thus use the remaining iterations to
make adjustments to this contour and match the ground truth.

3.3. Results

Table 1 shows the performance of the three evaluated mod-
els on the CALFIN test set. As there is no standardized way
of calculating the distance between two curves, we report av-
erage vertex-to-curve distances, as suggested in [15]. “For-
ward” denotes that the respective metric was calculated be-
tween the predicted vertices and the ground truth curve. Sim-
ilarly, “Backward” denotes the opposite, namely calculating
the metric between the ground truth vertices and the predicted
curve. While the widely used UNet falls far behind the other
two models, our proposed deep ACM slightly outperforms
the CALFIN-NN, which we attribute to the fact that skipping
the intermediate prediction of edge pixels allows the model to
more thoroughly learn the nature of calving fronts.

4. CONCLUSION

In this study, we proposed a way of using deep learning to
directly predict vectorized calving front lines instead of de-

4492

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on January 13,2023 at 17:08:20 UTC from IEEE Xplore. Restrictions apply.

Step 1 Step 2 Step 3 Step 4

Fig. 2. Model predictions (red) and ground truth (blue) for
tiles from the CALFIN test set. Shown are the iteration steps
of the model, “Step 4” is the final model output.

riving them indirectly from a segmentation map. The results
are promising and competitive with existing models based on
segmentation and edge-detection.

5. REFERENCES

[1] Celia A. Baumhoer, Andreas J. Dietz, Stefan Dech, and
Claudia Kuenzer, “Remote sensing of Antarctic glacier
and ice-shelf front dynamics—A review,” Remote Sens.,
vol. 10, no. 9, pp. 1445, Sept. 2018.

[2] Celia A. Baumhoer, Andreas J. Dietz, C. Kneisel, and
C. Kuenzer, “Automated extraction of antarctic glacier
and ice shelf fronts from sentinel-1 imagery using deep
learning,” Remote Sens., vol. 11, no. 21, pp. 2529, Jan.
2019.

[3] Yara Mohajerani, Michael Wood, Isabella Velicogna,
and Eric Rignot, “Detection of glacier calving margins
with convolutional neural networks: A case study,” Re-
mote Sens., vol. 11, no. 1, pp. 74, Jan. 2019.

[4] Konrad Heidler, Lichao Mou, Celia Baumhoer, An-
dreas Dietz, and Xiao Xiang Zhu, “HED-UNet: Com-
bined Segmentation and Edge Detection for Monitoring
the Antarctic Coastline,” IEEE Trans. Geosci. Remote
Sens., vol. 60, pp. 1–14, 2022.

[5] Daniel Cheng, Wayne Hayes, Eric Larour, Yara Mo-
hajerani, Michael Wood, Isabella Velicogna, and Eric

Rignot, “Calving Front Machine (CALFIN): Glacial
termini dataset and automated deep learning extraction
method for Greenland, 1972–2019,” The Cryosphere,
vol. 15, no. 3, pp. 1663–1675, Apr. 2021.

[6] Lawrence G Roberts, Machine Perception of Three-
Dimensional Solids, Ph.D. thesis, Massachusetts Insti-
tute of Technology, 1963.

[7] Saining Xie and Zhuowen Tu, “Holistically-nested edge
detection,” in IEEE Int. Conf. Comput. Vis. (ICCV), Dec.
2015, pp. 1395–1403.

[8] Michael Kass, Andrew Witkin, and Demetri Terzopou-
los, “Snakes: Active contour models,” Int. J. Comput.
Vis., vol. 1, no. 4, pp. 321–331, Jan. 1988.

[9] Diego Marcos, Devis Tuia, Benjamin Kellenberger, Lisa
Zhang, Min Bai, Renjie Liao, and Raquel Urtasun,
“Learning deep structured active contours end-to-end,”
ArXiv180306329 Cs, Mar. 2018.

[10] Sida Peng, Wen Jiang, Huaijin Pi, Xiuli Li, Hujun Bao,
and Xiaowei Zhou, “Deep snake for real-time instance
segmentation,” in 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seat-
tle, WA, USA, June 13-19, 2020. 2020, pp. 8530–8539,
IEEE.

[11] Francois Chollet, “Xception: Deep Learning with
Depthwise Separable Convolutions,” in 2017 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Honolulu, HI, July 2017, pp. 1800–1807,
IEEE.

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-Net: Convolutional networks for biomedical im-
age segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. (MICCAI), Nassir
Navab, Joachim Hornegger, William M. Wells, and Ale-
jandro F. Frangi, Eds., Oct. 2015, pp. 234–241.

[13] H. Sakoe and S. Chiba, “Dynamic programming algo-
rithm optimization for spoken word recognition,” IEEE
Trans. Acoust. Speech Signal Process., vol. 26, no. 1,
pp. 43–49, Feb. 1978.

[14] Marco Cuturi and Mathieu Blondel, “Soft-DTW:
A Differentiable Loss Function for Time-Series,”
ArXiv170301541 Stat, Feb. 2018.

[15] Janja Avbelj, Rupert Muller, and Richard Bamler, “A
Metric for Polygon Comparison and Building Extrac-
tion Evaluation,” IEEE Geosci. Remote Sensing Lett.,
vol. 12, no. 1, pp. 170–174, Jan. 2015.

4493

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on January 13,2023 at 17:08:20 UTC from IEEE Xplore. Restrictions apply.

