Saha, Sudipan and Zhao, Shan and Shahzad, Muhammad and Zhu, Xiao Xiang (2022) Mitigating Distribution Shift for Multi-Sensor Classification. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1201-1204. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883596.
PDF
692kB |
Official URL: https://ieeexplore.ieee.org/document/9883596
Abstract
Distribution shift may pose significant challenges in Earth observation, especially when dealing with significantly differ-ent sensors like multispectral optical and Synthetic Aperture Radar (SAR). Deep learning models trained for optical image classification generally do not generalize well for SAR images. This is due to very marked differences between them. Though there is a considerable amount of works on domain adaptation, only few deal with such strong differences. Towards this, we propose a co-teaching based domain adaptation method using dual classifier head, a Multi-layer Perceptron (MLP) classi-fier and a Graph Neural Network (GNN) classifier. The two classifier heads teach each other in an iterative manner, thus gradually adapting both of them for target classification. We experimentally demonstrate the efficacy of the proposed approach on Sentinel 2 (optical) as source and Sentinel 1 (SAR) images as target - both product of Copernicus program of European Space Agency.
Item URL in elib: | https://elib.dlr.de/193325/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Mitigating Distribution Shift for Multi-Sensor Classification | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883596 | ||||||||||||||||||||
Page Range: | pp. 1201-1204 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | SAR; Graph Neural Network; GNN; Multi-layer Perceptron | ||||||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Deposited On: | 16 Jan 2023 08:44 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page