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ABSTRACT

Distribution shift may pose significant challenges in Earth
observation, especially when dealing with significantly differ-
ent sensors like multispectral optical and Synthetic Aperture
Radar (SAR). Deep learning models trained for optical image
classification generally do not generalize well for SAR images.
This is due to very marked differences between them. Though
there is a considerable amount of works on domain adaptation,
only few deal with such strong differences. Towards this, we
propose a co-teaching based domain adaptation method using
dual classifier head, a Multi-layer Perceptron (MLP) classi-
fier and a Graph Neural Network (GNN) classifier. The two
classifier heads teach each other in an iterative manner, thus
gradually adapting both of them for target classification. We
experimentally demonstrate the efficacy of the proposed ap-
proach on Sentinel 2 (optical) as source and Sentinel 1 (SAR)
images as target - both product of Copernicus program of
European Space Agency.

Index Terms— Multi-sensor, Optical, Synthetic Aper-
ture Radar, Domain adaptation, Graph Neural Network, Co-
teaching.

1. INTRODUCTION

Earth observation acquisitions can be done by a wide array of
active and passive sensors. Most popular among them are the
passive optical multispectral and active synthetic aperture radar
(SAR) sensors. Deep learning has improved the state-of-the-art
in both optical and SAR image analysis. However, the success
of deep learning methods largely depends upon the availability
of annotated data of high quality and quantity. SAR has the
advantage to provide measurements that are independent from
the weather and light conditions. However, SAR images are
contaminated by multiplicative noise known as speckle and
lack visual saliency [1], which make it difficult to interpret
and challenging to annotate. Optical images, on the other
hand, are much more visually salient and thus annotations
can be more easily obtained. However, significant variation
between the optical and SAR data distributions exists. The
traditional supervised deep models trained using the optical
data without any adaptation are likely to fail on the SAR
domain. However, circumnavigating this challenge may be

helpful in many remote sensing problems, e.g., multi-sensor
change detection [2].

Domain adaptation (DA) is a popular machine learning
technique, where the system aims to adapt the knowledge
learned from source domain, and applies it to a target domain
without using any target annotation. In this regard, DA tech-
niques are able to align the data distributions either explicitly
using standard divergence measures [3] or implicitly using
adversarial approaches [4]. However, there are few works in
the domain adaptation literature towards dealing with such
strong inter-domain difference like optical and SAR. Mitigat-
ing strong divergence between optical and SAR data distri-
butions is challenging for existing divergence measures [3]
and adversarial based techniques [4]. Though several methods
have been introduced for domain adaptation in the context of
Earth observation image classification [5] [6] [7], most of them
focus on simpler settings, e.g., mitigating differences between
optical images collected from different locations [7].

Co-teaching [8] simultaneously trains two deep neural
networks and lets them teach each other. Roy et.al.[9] incor-
porated co-teaching in the context of domain adaptation to
simulate new labeled images in the target domain. Saha et. al.
[10] further showed its effectiveness in context of multi-city
adaptation. Motivated by this, we postulate learning robust
features in a unified optical-SAR space is important for DA be-
tween them. We propose to represent the source optical and the
target SAR samples as a graph and then leverage Graph Neural
Network (GNN) [11, 12] to aggregate semantic information
from similar samples in a neighborhood. The key contribution
of this paper is extending co-teaching based domain adaptation
for optical-SAR adaptation. Furthermore, we created a novel
test set-up using Sentinel 2 (optical) and Sentinel 1 (SAR)
images.

The paper is organized as follows. Proposed method is
presented in Section 2. The method is experimentally validated
in Section 3. Finally, we conclude the paper in Section 4.

2. PROPOSED METHOD

We are provided with a source optical labeled dataset S =
{(xs,i, ys,i)}ns

i=1 and a target SAR unlabeled dataset T =
{(xt,j)}nt

j=1. It is assumed that the label space of optical and
SAR domains are the same, comprising of nc classes. Our
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Fig. 1. Proposed joint MLP-GNN method for optical-SAR
adaptation.

Table 1. Two-head network architecture.
Network component Architecture
Feature extractor(F ) Resnet-18 excluding FC layer

MLP classifier(Gmlp) FC layer

Edge network(fedge)
Conv(256,256,1),
Conv(256,128,1),

Conv(128,1,1)

Node classifier(fnode)
Conv(512, 2× nc,1),
Conv(2× nc,nc,1)

goal is to learn a predictor for SAR domain using the data in
S ∪ T . We process the images using a feature extractor F , the
output of which is fed to a MLP classifier Gmlp and a GNN
classifier Ggnn. While Gmlp is aimed towards instance-level
independent prediction, Ggnn optimizes the prediction assum-
ing that a minibatch of samples are available. The proposed
framework is shown in Figure 1.

2.1. Feature extractor

Let F be a feature extractor network. For a given sample x,
it outputs f = F (x). We feed the network with a minibatch
of B samples drawn from the source (optical) domain and B
samples drawn from the target (SAR) domain. Minibatch is
fed to the feature extractor to obtain F = {fs,i, ft,i}Bi=1 that
is subsequently fed to both MLP network and GNN network.
The feature extractor network can be realized using residual
networks like ResNet-18 and ResNet-50 [13].

2.2. MLP classifier

Ingesting F as input, the MLP classifier Gmlp produces logits
Ĝ = {ĝs,i, ĝt,i}Bi=1. The classwise prediction p(ŷ = c; c ∈
nc) is obtained by passing Ĝ through softmax function. The
samplewise prediction of MLP classifier is not affected by the
other samples in the minibatch, i.e., it makes instance-level
independent predictions. The MLP classifier is trained with
cross-entropy loss using only the samples from the source S,
i.e., excluding the target samples in minibatch.

2.3. GNN classifier

GNN classifier Ggnn consists of an edge network fedge and a
node classifier fnode. Each node represents a feature vector of
an image and edges encode the relationship between every two
nodes. In each iteration, a graph whose structure is implied in
a 2B × 2B affinity matrix is created.

2.3.1. Edge Network

The edge network is directly fed with the output of feature
extractor, i.e., F and it produces an affinity matrix Â . The
entries âi,j in Â indicate the similarity between sample i and j
in the minibatch. When the sample i and j belong to the same
semantic category, the entries âi,j is set as 1 and 0 otherwise.
To train fedge, we need a target affinity matrix Âtar, with
entries âtari,j .

The ground truth Âtar needs to connect the objects of the
same class as neighboring nodes. To do so we require class
labels of all samples in the minibatch. While class labels of
samples belonging to source domain are known, labels for
samples belonging to the target domain are unknown. Towards
training, it is aided by Gmlp that generates pseudo-label for the
target samples. Nevertheless, not all pseudo-labels returned
by Gmlp are trustworthy. The detailed filtering strategy is
described Section 2.3.3 to select the high quality pseudo labels.
The fedge is trained using a binary cross entropy loss.

Ledge = âtari,j log p(âi,j) + (1− âtari,j ) log (1− p(âi,j)) (1)

2.3.2. Node Network

The fnode aggregates the features in F based on the estimated
affinity matrix Â such that for each node/sample the most sim-
ilar samples in its neighbourhood contribute to its final repre-
sentation. The fnode outputs its logits as Ḡ0 = {ḡs,i, ḡt,i}Bi=1.
The classwise prediction p(ȳ = c; c ∈ nc) is obtained by pass-
ing Ḡ0 through softmax function. Different to p(ŷ = c; c ∈ nc)
that is merely an instance-level independent prediction, p(ȳ =
c; c ∈ nc) accounts for the other samples in the minibatch, that
helps it to obtain superior result.

Lnode = − 1

|Bs|

Bs∑
i=1

ys,i log p(ȳs,i) (2)

2.3.3. Filtering of pseudo labels

As mentioned in Section 2.3.1, not all pseudo labels produced
by MLP are correct. The accuracy of the pseudo labels plays
an important role in the adaptation process. Towards this,
Roy et.al. [9] mask out the pseudo labels whose confidence
score(entropy) is lower than a pre-chosen threshold. How-
ever, choosing threshold a priori is challenging and may need
additional validation set. Luo et.al.[14] take the progressive
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learning strategy and each time label a percentage of the tar-
get samples according to their confidence score. Again, the
enlarge factor α is a hyperparameter that needs to be carefully
considered against the model performance and the computa-
tional cost. To circumnavigate this problem, we propose to
take the co-assistance strategy. The output of the MLP is com-
pared with GNN, only if both of them return the same label of
a given target sample, the target sample is pseudo labeled.

wj =

{
1, if maxc∈nc

p(ȳt,j = c) = maxc∈nc
p(ŷt,j = c)

0, otherwise
(3)

when wj is 1, pseudo label (either from GNN or MLP) of
xt,j will be used to form Âtar. Otherwise the pseudo label
is discarded. In Figure 1, the double red lines are the co-
assistance filtering strategy for the selection of high-quality
pseudo-labels, and the filtered predictions are fed to GNN
(following the green line) for the construction of affinity matrix
as mentioned in Section 2.3.1.

2.4. Domain discriminator

In tandem with proposed MLP-GNN setting, similar to [15],
we also train a domain discriminator, connected to the fea-
ture extractor by a gradient reversal layer (GRL), using an
adversarial loss Ladv .

2.5. Summarized adaptation process

The source samples S helps in training the MLP classifier
Gmlp that in turn helps in selecting pseudo samples from target
domain T . The source and the pseudo samples from target
jointly help in training the Ggnn that further helps in improving
Gmlp in a co-teaching manner. This process is further aided
by domain discriminator that reduces the representation gap
between source and target samples.

3. EXPERIMENTS

3.1. Dataset and settings

For validation of the proposed method, we use Sen12MS
dataset that is a curated dataset of georeferenced multi-Spectral
Sentinel-1/2 Imagery for scene classification. Sen12MS
dataset [16] consists of dual-pol synthetic aperture radar
(SAR) Sentinel-1 patches and full multi-spectral Sentinel-2
image patches. The size of each image is 256 × 256 pixels
and the images are upsampled to a ground sampling distance
of 10m.

For each domain, 1000 images/class are sampled for seven
different classes. The classes are forest, shrubland, savanna,
grassland, cropland, urban/builtup, and water. Thus the optical-
SAR dataset in our experiments consists of 7000 optical im-
ages sampled from 7 classes and similarly for the SAR domain.
For optical images, we used the RGB channels.

Table 2. Quantitative comparison of the proposed method with
other methods

Method Classification accuracy

Optical trained (no adaptation) 25.63
BIN [17] 28.49
Threshold based co-teaching [9] 38.83
Proposed MLP head 44.66
Proposed GNN head 44.91

The feature extractor used is pre-trained ResNet-50. We
train the model using a Stochastic Gradient Descent (SGD)
optimizer having an initial learning rate of 5e-4 and decay
exponentially. The λnode is 0.3, and λedge, λadv are set as
1. First the model is trained using mere optical images for
1000 epochs, then it is adapted on the target domain for 5000
epochs. Due to the brightness shifts between optical and SAR
images, the image normalization at the preprocessing stage is
done using sensor-specific own mean and standard deviation.

3.2. Compared methods

The following methods are compared to the proposed method:

1. Model trained on Sentinel-2 data (no adaptation).

2. Statistical alignment based Batch-instance normaliza-
tion (BIN) [17].

3. Model using co-teaching based strategy as in the pro-
posed method, however using a threshold based pseu-
dolabel selection as in [9].

3.3. Result

Without adaptation, the network on the optical Sentinel-2 im-
ages perform poorly on the SAR Sentinel-1 images (25.63%).
In spite of poor performance, this is superior to the random
guessing for balanced 7-class classification problem (14.29%).

Co-teaching [9] significantly improves the classification
accuracy (38.83%). Target classification accuracy further im-
proves by employing our proposed filtering of pseudolabels
along with co-teaching. MLP head of the proposed method
obtains an accuracy of 44.66%, while GNN head obtains an
accuracy of 44.91%. Superior performance of the GNN head
in comparison to MLP head further validates the merit of GNN
in aggregating information across different domains. Thus,
the proposed method obtains almost 20% improvement over
the model without adaptation. Quantitative result is shown in
Table 2.

4. CONCLUSIONS

This paper proposed a deep domain adaption method using
a joint MLP-GNN architecture for the classification of multi-
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sensor optical-SAR remote sensing data. Optical-SAR adap-
tation is a challenging task as the divergence between source
domain (optical) and target domain (SAR) is large. Despite
such strong difference between Sentinel-2 and Sentinel-1 data,
the method is capable of using the former to classify the latter.
The experimental results on an optical-SAR dataset showed
the superiority of the GNN-based prediction in comparison
to network before adaptation and simple statistical alignment
based adaptation. Though there is much scope of improvement,
we need to consider that SAR and optical images are consider-
ably different and thus adapting a classifier for such scenario is
significantly challenging. In future we plan to further improve
the method by investigating different GNN architectures, e.g.,
Graph Attention Network.
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