Saha, Sudipan und Zhao, Shan und Shahzad, Muhammad und Zhu, Xiao Xiang (2022) Mitigating Distribution Shift for Multi-Sensor Classification. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1201-1204. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883596.
PDF
692kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9883596
Kurzfassung
Distribution shift may pose significant challenges in Earth observation, especially when dealing with significantly differ-ent sensors like multispectral optical and Synthetic Aperture Radar (SAR). Deep learning models trained for optical image classification generally do not generalize well for SAR images. This is due to very marked differences between them. Though there is a considerable amount of works on domain adaptation, only few deal with such strong differences. Towards this, we propose a co-teaching based domain adaptation method using dual classifier head, a Multi-layer Perceptron (MLP) classi-fier and a Graph Neural Network (GNN) classifier. The two classifier heads teach each other in an iterative manner, thus gradually adapting both of them for target classification. We experimentally demonstrate the efficacy of the proposed approach on Sentinel 2 (optical) as source and Sentinel 1 (SAR) images as target - both product of Copernicus program of European Space Agency.
elib-URL des Eintrags: | https://elib.dlr.de/193325/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Mitigating Distribution Shift for Multi-Sensor Classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883596 | ||||||||||||||||||||
Seitenbereich: | Seiten 1201-1204 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | SAR; Graph Neural Network; GNN; Multi-layer Perceptron | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Hinterlegt am: | 16 Jan 2023 08:44 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags