Qian, Kun and Wang, Yuanyuan and Jung, Peter and Shi, Yilei and Zhu, Xiao Xiang (2022) Complex-Valued Sparse Long Short-Term Memory Unit with Application to Super-Resolving SAR Tomography. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 591-594. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883246.
PDF
1MB |
Official URL: https://ieeexplore.ieee.org/document/9883246
Abstract
To achieve super-resolution synthetic aperture radar (SAR) tomography (TomoSAR), compressive sensing (CS)-based algorithms are usually employed, which are, however, computationally expensive, and thus is not often applied in large-scale processing. Recently, deep unfolding techniques have provided a good combination of physical model-based algorithms and the ability of neural networks to learn from data. In this vein, iterative CS-based algorithms can usually be un-rolled as neural networks with only 10 to 20 layers. When trained, it shows great computational efficiency for further TomoSAR processing. However, the learning architecture of neural networks built in this approach tends to result in error propagation and information loss, thus degrading the performance. In this paper, we propose to employ complex-valued sparse long short-term memory (CV-SLSTM) units to tackle this problem by incorporating historically updating information into the optimization procedure and preserving full information. Simulations are carried out to validate the performance of the proposed algorithm.
Item URL in elib: | https://elib.dlr.de/193320/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Complex-Valued Sparse Long Short-Term Memory Unit with Application to Super-Resolving SAR Tomography | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883246 | ||||||||||||||||||||||||
Page Range: | pp. 591-594 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | tomography; compressive sensing; TomoSAR | ||||||||||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Deposited On: | 16 Jan 2023 08:42 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page