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ABSTRACT

To achieve super-resolution synthetic aperture radar (SAR)
tomography (TomoSAR), compressive sensing (CS)-based al-
gorithms are usually employed, which are, however, compu-
tationally expensive, and thus is not often applied in large-
scale processing. Recently, deep unfolding techniques have
provided a good combination of physical model-based algo-
rithms and the ability of neural networks to learn from data.
In this vein, iterative CS-based algorithms can usually be un-
rolled as neural networks with only 10 to 20 layers. When
trained, it shows great computational efficiency for further
TomoSAR processing. However, the learning architecture of
neural networks built in this approach tends to result in error
propagation and information loss, thus degrading the perfor-
mance. In this paper, we propose to employ complex-valued
sparse long short-term memory (CV-SLSTM) units to tackle
this problem by incorporating historically updating informa-
tion into the optimization procedure and preserving full in-
formation. Simulations are carried out to validate the perfor-
mance of the proposed algorithm.

Index Terms— SAR tomography, Super-resolution,
Complex-valued neural network, deep learning

1. INTRODUCTION

1.1. TomoSAR imaging model

SAR tomography (TomoSAR) is known as a powerful tech-
nique for 3-D reconstruction in dense urban areas due to its
strong capability of separating overlaid scatterers in the same
resolution unit. In the presence of noise ε, the discrete To-
moSAR imaing model can be expressed as follows:

g = Rγ + ε, (1)

where g ∈ CN×1 is the complex-valued SAR measurement
vector and γ ∈ CL×1 denotes the discrete reflectivity profile
uniformly sampled at elevation position sl(l = 1, 2, . . . , L)
along the elevation direction. N is the number of measure-
ments and L is the number of discrete elevation indices. R ∈

CN×L is the irregularly sampled discrete Fourier transforma-
tion mapping matrix with Rnl = exp (−j2πξnsl). ξn =
−2bn/(λr) denotes the elevation frequency.
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Fig. 1: The SAR imaging geometry. The elevation synthetic
aperture is built up by SAR data acquired from slightly dif-
ferent viewing angles. Flight direction is orthogonal into the
plane.

1.2. CS-based TomoSAR inversion

It was investigated in [1] that usually only a few scatterers (0-
4) are overlaid along the elevation direction in each resolution
unit in dense urban areas, meaning that the reflectivity profile
should be sparse in the space domain. Therefore, one usually
resorts to compressive sensing [1] [2] (CS)-based sparse re-
construction methods to distinguish multiple scatterers over-
laid in an individual resolution unit along the elevation direc-
tion. With CS-based methods, the reflectivity profile γ̂ can be
estimated by:

γ̂ = argmin
γ

{
‖g −Rγ‖22 + λ‖γ‖1

}
(2)

CS-based methods are known to have unprecedented super-
resolution ability and estimation accuracy. However, CS-
based methods are extremely computationally expensive due
to costly L2-L1 mix norm minimization using typical ba-
sis pursuit denoising and are hard to be applied to practical
large-scale TomoSAR processing.
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Fig. 2: Illustration the learning architecture of a K-layer γ-Net.

1.3. Deep learning for TomoSAR inversion

Recently, an emerging technique coined deep unfolding [3]
was proposed to provide a concrete and systematic connec-
tion between iterative physical model based algorithms and
deep neural networks, especially for sparse coding. Inspired
by this, the TomoSAR community started to investigate the
potential of deep unfolding techniques for TomoSAR inver-
sion [4]. The author proposed γ-Net in [4] by unrolling iter-
ative shrinkage thresholding algorithm (ISTA) as a complex-
valued recurrent neural network and integrating weight cou-
pling [5] and support selection [5] into the network struc-
ture. Fig. 2 illustrates us the learning architecture of γ-
Net. It was demonstrated in [4] that γ-Net has competitive
performance w.r.t super-resolution power and estimation ac-
curacy with the state-of-the-art CS-based TomoSAR method
SL1MMER. However, γ-Net still suffers from error propa-
gation and information loss since it inherits the learning ar-
chitecture of the learned ISTA (LISTA) despite modifications
made by the authors to accommodate to TomoSAR inversion.
To be specific, the errors in the first few layers will be prop-
agated and further amplified in the upcoming layers because
the output in the current layer is generated exclusively on the
previous output. More seriously, once useful information is
discarded in the previous layers, it is no longer possible for
the upcoming layers to recover and utilize the discarded in-
formation. As a consequence, large estimation errors can be
expected.

1.4. Contribution of this paper

To address this issue, we proposed complex-valued sparse
long short-term memory (CV-SLSTM) units in this paper by
introducing two gated units to preserve full information. With
the assistance of the CV-SLSTM units, the long-term depen-
dence of the previous outputs can be captured and maintained.
Simultaneously, the CV-SLSTM unit automatically accumu-
lates important information and forgets redundant informa-
tion in the dynamics of the network.

2. COMPLEX-VALUED SPARSE LONG
SHORT-TERM MEMORY UNIT

2.1. Sparse long short-term memory unit

In the optimization community, it has been extensively stud-
ied and proved [6, 7, 8] that incorporating historically up-
dating information contributes to improving the algorithm
performance. Inspired by the previous researches about
incorporating historically updating information, the author
proposed sparse long short-term memory (SLSTM) unit in
[9] to integrate and make use of historically updating infor-
mation to preserve full information by introducing forget and
input gates, termed as f and i, respectively, into each layer of
LISTA.

Fig. 3: SLSTM unit. Each unit refers to a layer of the pro-
posed deep RNN.

Fig. 3 illustrates us the learning structure of an individual
SLSTM unit. To clarify, SLSTM unit does not have the output
gate like conventional LSTM units. Specific formal definition
of a SLSTM unit is expressed as follows:

i(t) = σ
(
W

(t)
i2 γ̂

(t−1) +W
(t)
i1 g

)
f (t) = σ

(
W

(t)
f2 γ̂

(t−1) +W
(t)
f1g

)
C̃(t) = W2γ̂

(t−1) +W1g (3)

C(t) = f (t) �C(t−1) + i(t) � C̃(t)

γ̂(t) = ηdt

(
C(t)

)
where W∗ denotes the weight matrices to be learned in each
SLSTM unit. It is worth mentioning that the weight matrices
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W1 and W2 are shared for all SLSTM units in a network.
σ(·) indicates the conventional sigmoid function. ηdt(·) is the
double hyperbolic tangent function and acts as the sparse ac-
tivation function employed in the SLSTM to promote sparse
codes. It is defined as follows:

ηdt(γ̂) = s · [tanh(γ̂ + θ) + tanh(γ̂ − θ)] (4)

where s and θ denote two trainable parameter. It is worth not-
ing that the double hyperbolic tangent function can be viewed
as a smooth and continuously differentiable alternative of the
conventional soft-thresholding function.

Its advantages are mainly two-fold. On the one hand, its
second derivative sustains for a long span so that it is able to
effectively address the gradient vanishing problem caused by
the cell recurrent connection. On the other hand, it is able to
effectively imitate the soft-thresholding function within the
interval of [−θ, θ]. Fig. 4 demonstrates an example of the
double hyperbolic tangent function and compares it to the
soft-thresholding function.

The RNN built with SLSTM units is termed as sc2net [9].
The cell state C(t) in each SLSTM unit of sc2net acts as an
”eye” to supervise the optimization from two aspects. First,
the long-term dependence from the previous outputs can be
captured and maintained. Second, important information will
be automatically accumulated, whereas useless or redundant
information will be blocked, in the dynamics of sc2net.

Fig. 4: comparison between double tanh and soft-
thresholding

2.2. Complex-valued SLSTM unit

To apply SLSTM units to solve TomoSAR inversion, we need
to further extend it to a complex domain since SAR data is
complex-valued. The Complex-valued SLSTM (CV-SLSTM)
unit has essentially the same structure as the SLSTM unit de-
spite two differences. First, each neuron in the CV-SLSTM
unit has two channels indicating the real and imaginary parts
of a complex number, respectively. In addition, the complex
number cannot be directly activated. Usually, we need to per-
form the activation on the magnitude of the complex number.

Hence, it is no longer appropriate to use the sigmoid function
for activation to generate the forget and input gates since the
magnitude is always larger than zero and the forget and input
gates will always be larger than 0.5 after activation, which
is not reasonable and seriously affects the performance. To
tackle this problem, we employed the ”tanh” function instead
of the sigmoid function to guarantee that the value of the for-
get and input gates varies from 0 to 1 after activation, as it was
originally designed. By applying the aforementioned adap-
tions to Eq. (3), we have the formulation of the CV-SLSTM
unit as follows:

i(t) = tanh
(
|W(t)

i2 γ̂
(t−1) +W

(t)
i1 g|

)
f (t) = tanh

(
|W(t)

f2 γ̂
(t−1) +W

(t)
f1g|

)
C̃(t) = W2γ̂

(t−1) +W1g (5)

C(t) = f (t) �C(t−1) + i(t) � C̃(t)

γ̂(t) = ηcv−dt

(
C(t)

)
where ηcv−dt(·) is the complex-valued version of the double
hyperbolic function and expressed as follows:

ηcv−dt(γ̂) = s · ej·∠(γ̂)[tanh(|γ̂|+ θ)+tanh(|γ̂|− θ)], (6)

with j being the imaginary number.

3. EXPERIMENTS

The performance of the proposed algortihm is validated us-
ing simulations. We simulated an interferometric stack con-
taining 25 regularly distributed baseline ranging from -135m
to 135m. The elevation aperture size of 270m results in a
Rayleigh resolution ρs of about 42m. Overlaid double scat-
terers were simulated in each resolution unit. The double scat-
terers were set to have identical amplitude and phase, which
is the worst case in TomoSAR processing.

A well-known TomoSAR benchmark test [1] [10] was
carried out to evaluate the super-resolution power as well as
the estimation accuracy of the proposed algorithm. In the ex-
periment, we simulated double scatterers with increasing ele-
vation distance between the two layovered scatterers, in order
to mimic a facade-ground interaction. Two different scenarios
with SNR∈ {0, 6} dB were taken into consideration, which
represent typical SNR levels in a high-resolution spaceborne
SAR image.

We used the effective detection rate Pd to evaluate the
performance. An effective detection should simultaneously
satisfy the following three criteria:

1. the hypothesis test correctly decides two scatterers for
a double-scatterers signal;

2. the estimated elevation of both detected double scatter-
ers are within ±3 times CRLB w.r.t the ground truth;
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3. both elevation estimates are also within ±0.5 ds w.r.t.
the ground truth.

ds is the elevation distance between the double scatterers. The
third criterion is seldom seen in the literature. However, it
is necessary, because in extremely super-resolving cases, 3
times CRLB is a constraint not sufficient to guarantee rea-
sonable estimates. ±0.5 ds is a much stricter constraint in
such cases, which will reflect the true performance of the al-
gorithm. With the effective detection rate, we can simultane-
ously evaluate the super-resolution power and the estimation
accuracy since an effective detection not only means the suc-
cessful detection of double scatterers, but also guarantee that
the elevation estimate has low bias in the meantime.

Fig. 5 compares the effective detection rate Pd of the
proposed algorithm and γ-Net [4]. The effective detection
rate Pd is plotted as a function of the normalized distance α,
which is defined as the ratio between the elevation distance
between the double scatterers ds and the Rayleigh resolution
ρs. As can be seen in Fig. 5, the proposed algorithm achieves
a higher effective detection rate. To be specific, at 6dB SNR,
the proposed algorithm offers about 10% to 20% higher effec-
tive detection rate than γ-Net in the super-resolving regime,
i.e. the double scatterers are spaced closer than 0.6 Rayleigh
resolution. In the low SNR case, the effective detection rate
of the proposed algorithm is, on average, about 20% higher
than that of γ-Net.
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Fig. 5: Effective detection rate as a function of the normalized
elevation distance between the simulated facade and ground
using the proposed algorithm and γ-Net with SNR = 0dB and
6dB under 0.2 million Monte Carlo trials.

4. CONCLUSION

In this paper, we introduced the SLSTM unit and extended it
to the CV-SLSTM unit to solve SAR tomography. By intro-
ducing two gated units to each LISTA layer, the CV-SLSTM
unit is able to preserve full information and overcome the
problem of error propagation and information loss caused

by the learning architecture of LISTA. Realistic simulation
demonstrates that a RNN built with CV-SLSTM units is able
to deliver significantly better super-resolution power in To-
moSAR than the state of the art. The encouraging result opens
up a new prospect for SAR tomography using deep learning
and motivates us to further investigate the potential of the
RNN with gated units in practical TomoSAR processing.
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