Qian, Kun und Wang, Yuanyuan und Jung, Peter und Shi, Yilei und Zhu, Xiao Xiang (2022) Complex-Valued Sparse Long Short-Term Memory Unit with Application to Super-Resolving SAR Tomography. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 591-594. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883246.
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9883246
Kurzfassung
To achieve super-resolution synthetic aperture radar (SAR) tomography (TomoSAR), compressive sensing (CS)-based algorithms are usually employed, which are, however, computationally expensive, and thus is not often applied in large-scale processing. Recently, deep unfolding techniques have provided a good combination of physical model-based algorithms and the ability of neural networks to learn from data. In this vein, iterative CS-based algorithms can usually be un-rolled as neural networks with only 10 to 20 layers. When trained, it shows great computational efficiency for further TomoSAR processing. However, the learning architecture of neural networks built in this approach tends to result in error propagation and information loss, thus degrading the performance. In this paper, we propose to employ complex-valued sparse long short-term memory (CV-SLSTM) units to tackle this problem by incorporating historically updating information into the optimization procedure and preserving full information. Simulations are carried out to validate the performance of the proposed algorithm.
elib-URL des Eintrags: | https://elib.dlr.de/193320/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Complex-Valued Sparse Long Short-Term Memory Unit with Application to Super-Resolving SAR Tomography | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883246 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 591-594 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | tomography; compressive sensing; TomoSAR | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Hinterlegt am: | 16 Jan 2023 08:42 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags