Zhang, Fahong and Shi, Yilei and Zhu, Xiao Xiang (2022) Domain-Agnostic Domain Adaption for Building Footprint Extraction. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 318-321. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883996.
PDF
13MB |
Official URL: https://ieeexplore.ieee.org/document/9883996
Abstract
For global range satellite imaging mission, images captured from different areas may have large distribution biases due to different illuminations, shooting angles and atmospheric conditions. A straightforward idea to mitigate this problem is to categorize the images into different domains according the cities they belong to, and apply domain adaptation approaches. However, categorization by cities becomes unreasonable with the increase of the city number, and the emergence of inter-city similarity and intra-city discrepancy. With such consideration, this paper proposes a novel domain adaptation method named domain-agnostic domain adaptation (DADA) to reduce the distribution biases without explicitly defining the domain each image belongs to. To implement this, we augment the images to the styles of different domains by Generative Adversarial Networks (GAN) and contrastive learning to increase the generalizability of down-stream tasks. Experiments on Planetscope building footprint extraction datasets verify the effectiveness of our method.
Item URL in elib: | https://elib.dlr.de/193318/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Domain-Agnostic Domain Adaption for Building Footprint Extraction | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883996 | ||||||||||||||||
Page Range: | pp. 318-321 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | DADA, GAN | ||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Deposited On: | 16 Jan 2023 08:41 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page