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ABSTRACT

For global range satellite imaging mission, images captured
from different areas may have large distribution biases due
to different illuminations, shooting angles and atmospheric
conditions. A straightforward idea to mitigate this problem
is to categorize the images into different domains according
the cities they belong to, and apply domain adaptation ap-
proaches. However, categorization by cities becomes unrea-
sonable with the increase of the city number, and the emer-
gence of inter-city similarity and intra-city discrepancy.

With such consideration, this paper proposes a novel
domain adaptation method named domain-agnostic domain
adaptation (DADA) to reduce the distribution biases without
explicitly defining the domain each image belongs to. To
implement this, we augment the images to the styles of differ-
ent domains by Generative Adversarial Networks (GAN) and
contrastive learning to increase the generalizability of down-
stream tasks. Experiments on Planetscope building footprint
extraction datasets verify the effectiveness of our method.

Index Terms— Domain Adaptation, Generative Adver-
sarial Networks, Contrastive Learning.

1. INTRODUCTION

With the rapid developments of satellite imaging techniques
and the increase of spacing missions, massive amounts of
world-wide remote sensing data can be achieved with less
efforts. This enables the emergence of global range remote
sensing applications such as object detection [1], land cover
classification [2] and build footprint extraction [3]. Among
earlier practices, people notice the generalization inferiority
when applying models trained on source cities to unseen tar-
get cities, i.e., the domain shift problem. The underlying rea-
son could be the source and target data distributions are bi-
ased due to different illuminations, shooting angles and at-
mospheric conditions.

To solve such problem, domain adaptation methods are
adopted to increase the generalizability of downstream net-
works [4, 5]. Previous methods treat each city as a domain
and perform single-source or multi-source domain adaptation
to stylize images to the appearances of different domains.

However, with the increase of the city number (e.g., 102 -
103), there could be different cities with similar appearances.
Besides, image patches from the same city could be of dif-
ferent styles when the city image are composited by two or
more different flights. Theses kinds of inter-city similarities
and intra-city discrepancies violate the assumption that each
city image corresponds to a domain.

To mitigate this problem, we propose a domain-agnostic
domain adaptation (DADA) approach without explicitly
defining the domain, but seek to exploit the spatial neigh-
boring relation among image patches, and contrastively learn
to model the similarity between images. The contributions of
this paper can be summarized as follows:

• We highlight and study the inter-city similarity and
intra-city discrepancy problem occurred when apply-
ing domain adaptation methods on large-scale global
range appliactions.

• We propose a domain-agnostic domain adaptation
(DADA) methods to solve such problem without ex-
plicitly defining the domain each image belongs to.
In DADA, a contrastively learning and adversarial
learning-based framework is built to generate images
with different styles, and further improve the general-
izability.

• Experiments on Planetscope building footprint datasets
demonstrate the effectiveness of the proposed methods
both qualitatively and quantitatively.

2. METHODOLOGY

The overall architecture of DADA is illustrated in Fig. 1. To
evaluate the effectiveness of DADA, we set building footprint
extraction as the downstream task, yet one can easily extend
it to other tasks.

2.1. Problem Formulation

This section formulates the domain adaptation setting for
building footprint extraction. First, the source domain data
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Fig. 1: Illustration of DADA. During the training phase, An anchor patch xanc, a positive patch xpos and a negative patch xneg

will be sampled, in which xanc and xpos are neighboring patches. Inspired by previous arts [6, 4], a reconstruction loss and
a cycle consistency loss are applied to maintain the structural information. Besides, a novel triplet adversarial loss is applied
on xanc, xpos, xneg , the fake negative image x̃anc and the fake anchor image x̃neg simultaneously to learn to perform style
transfer.

are given as S = {(xs
i ,y

s
i }

Ns
i=1, where xs

i ∈ RH×W×3 de-
notes the image patch and ys

i ∈ RH×W its label, indicating
whether each pixel corresponds to the building area or not.
The target domain data are given as T = {(xt

i,y
t
i}

Nt
i=1. In

contrary to S, the target domain labels yt
i is only available

during evaluation. During the acquisition of each image
patch, we assume the coordinate information is recorded,
which allow us to access the neighboring patches of each
patch. Here we denote the neighboring patches of xi as
Ωxi . With such formulation, the building footprint extraction
problem can be formulated as:

min
h

∑
(x,y)∈S

Lseg(x, G(x, x̃),y). (1)

Here h denotes the segmentation networks, G(x, x̃) the fake
image generated by the generator depicted in Fig. 1, and x̃
a randomly sampled image patch that provide the style infor-
mation. The segmentation loss Lseg is further defined as:

Lseg = Lcse(h(x),y) + Lcse(h(G(x, x̃)),y), (2)

where Lcse is the cross entropy loss. To balance the impor-
tance of building and non-building area, we use a class weight
of 5 : 1 when calculating Lcse. The semantic segmentation
networks are trained on the original images x as well as the
stylized images G(x, x̃). Since x̃ can be sampled from the
target domain, the model’s generalizability can be improved
by training on target-style source data G(x, x̃).

The generator G is trained in an adversarial manner:

min
G,D

∑
π(S∪T )

Lgen + Ldis, (3)

where D is the discriminator, π is a sampling function that
will be introduced in Section 2.2, and Lgen and Ldis are loss
functions that will be presented in Section 2.3 and 2.4.

2.2. Triplet Sampling

The generator networks G is trained based on a triplet sam-
pling strategy. More specifically, an anchor patch xanc, a pos-
itive patch xpos and a negative patch xneg will be sampled
from the union of source and target domain S ∪ T at each
time: (xanc,xpos,xneg) = π(S ∪ T ). Here all of these three
patches are randomly sampled from S ∪ T , under the only
restriction that xanc and xpos are neighboring patches, i.e.,
xpos ∈ Ωxanc

.

2.3. Generator Loss Lgen

The generator loss Lgen consists of self-reconstruction loss
Lrec, cycle loss Lcyc and adversarial loss Ladv .

Lgen = λ1Lrec + λ2Lcyc + λ3Ladv. (4)

Lrec is applied to ensure the features extracted by the en-
coder can be used to reconstruct the original image.

Lrec =
∑

x∈{xanc,xneg}

∥Gdec(Genc(x), Genc(x))− x∥1 ,

(5)
where Genc(·) and Gdec(·, ·) are the encoder and decoder of
the generator G. Gdec(z1, z2) will first normalize z1 with the
style of z2 by adaptive instance normalization (AdaIn) [7],
and then decode z1 to the size of the original image.
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The adversarial loss for the generator is defined as:

Lg
adv = (D(x̃anc)− 1)2 + (D(x̃neg)− 1)2

+max(0, S(xanc,xneg)− S(x̃anc,xneg) + α)

+max(0, S(xanc,xneg)− S(xanc, x̃neg) + α).

(6)

Here x̃anc (or x̃neg) is the fake image generated from xanc

(or xneg) with the style of xneg (or xanc) as illustrated in Fig.
1:

x̃anc = Gdec(Genc(xanc), Genc(xneg)),

x̃neg = Gdec(Genc(xneg), Genc(xanc)).
(7)

D(x) is the prediction of the discriminator, evaluating the
probability that x is a real image rather than a fake one.
S(x1,x2) is the similarity of x1 and x2 measured by the dis-
criminator according to their feature-level cosine similarity.
The first two terms are utilized to cheat the discriminator to
take the generated images as the real ones. The last two are
triplet losses that are used to improve the stylization quality
of x̃anc and x̃neg , which incorporates a contrastive learning
mechanism.

Cycle loss Lcyc is first proposed in CycleGAN [8], which
is used to ensure the stylized images x̃anc and x̃neg can main-
tain the structural information in xanc and xneg:

Lcyc =
∥∥∥x′

anc − xanc

∥∥∥
1
+
∥∥∥x′

neg − xneg

∥∥∥
1
. (8)

Here x
′

anc and x
′

neg are images reconstructed from x̃anc and
x̃neg:

x
′

anc = Gdec(Genc(x̃anc), Genc(x̃neg)),

x
′

neg = Gdec(Genc(x̃neg), Genc(x̃anc)).
(9)

2.4. Discriminator Loss Ldis

The discriminator loss Ldis is defined as:

Ldis =(D(x̃anc)− 0)2 + (D(x̃anc)− 0)2 + (D(xanc)− 1)2

+max(0, S(xanc,xneg)− S(x̃anc,xneg) + α)

+max(0, S(xanc,xneg)− S(xanc, x̃neg) + α).

(10)

The first three terms are imposed to learn to discriminate gen-
erated images from the real ones to improve the generation
quality. The last two are used to distinguish the fake stylized
images from the real image of the target style, so as to im-
prove the quality of stylization.

3. EXPERIMENTS

3.1. Datasets

We evaluate our method on Planetscope reflectance data. The
data contain 3 RGB channels and a near infrared channel,

Train
City Munich Moscow Paris Rome Zurich

# 2,836 2,981 2,997 2,869 2,312

Test
City Yaounde Djibouti Niamey Thamaga Daressalaam

# 853 283 361 141 2,228

Table 1: Number of patches for training domain and testing
domain cities.

where only the RGB channels are used in our experiments.
The data are of resolution 3m, and are collected from 5 Eu-
ropean cities including Munich, Rome, Moscow, Paris and
Zurich, and 5 African cities including Daressalaam, Djibouti,
Yaounde, Thamaga and Niamey. To evaluate under a rela-
tively large domain shift, we select the 5 European cities as
the training domain while the African cities as the testing do-
main. All the data are splitted to patches with size 256× 256
with a overlap of 128 pixels. The number of patches for each
city are listed in Table 1.

3.2. Implementation Details

To train DADA, we use a shallow structure with four network
blocks, each contains a 2D convolution, a instance normal-
ization, a max pooling and a ReLU layer. The number of
channels for these blocks are 256, 128, 64, and 32 respec-
tively. During the training phase, the batch size is set to 8.
The network is trained by a SGD optimizer with Nesterov ac-
celeration. The momentum and weight decay are set to 0.9
and 5 × 104, respectively. The initial learning rate is set to
0.01 and a polynomial learning rate decay with power 0.95
is applied. The training lasts for 160, 000 iterations. The hy-
perparameter α in Eq. (6) and Eq. (10) is set to 0.3. The
loss weight λ1, λ2 and λ3 in Eq. (4) are set to 10, 10 and 1
respectively.

For the downstream building footprint extraction task, a
semantic segmentation network is trained, where a Unet [9]
architecture with a ResNet50 [10] backbone is used. The op-
timizer, learning rate and batch size setting are the same as
above. The training lasts for 200, 000 iterations.

3.3. Evaluation Metrics

We evaluate the performance of DADA by three metrics, in-
cluding mean Intersection over Union (mIoU), F1 score, and
Overall Accuracy (OA) of the building area. The results are
reported by averaging the results from each test domain city.

3.4. Qualitative Results

We visualize the images generated by DADA in Fig. 2. As
can be observed, images in the same column generally have
similar appearances, while those in different columns looked
different, which indicates that DADA can perform style trans-
fer well between any pair of image.
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Fig. 2: Visualization of the images generated by DADA. Di-
agonal lines of the image matrix are the original images sam-
pled from each city. The image located in row i and column
j is generated from the original image in row i, with the style
of the original image in row j.

Methods mIoU F1 OA

Baseline 20.0 32.4 74.9
Hist. Equ. 29.6 44.2 77.4
DADA 30.6 45.5 79.2

Table 2: Metrics (%) of different methods on the testing set.
The best results are highlighted in bold. The results are re-
ported by averaging the results from each test domain city.

3.5. Quantitative Results

We list the quantitative comparison results in Table 2. The
results for a baseline method and a histogram equalization
(Hist. Equ.) based method are reported for comparison. The
baseline method here simply trains the semantic segmentation
networks on the original image patches. Hist. Equ. trains
and tests the networks on images normalized by histogram
equalization. According to the results, both Hist. Equ. and
DADA can improve the segmentation performance over the
baseline. Besides, DADA can outperform Hist. Equ., which
demonstrates its effectiveness.

4. CONCLUSION

This paper studies the domain shift problem occurred on dif-
ferent areas of the satellite images, and especially focuses on
global range applications where it is hard to define the domain

each image belongs to. We develop a novel domain-agnostic
domain adaptation (DADA) method that can perform image-
level style transfer between any pair of images without ex-
plicitly knowing the domain they come from. Comparative
experiments on Planetscope datasets demonstrate the effec-
tiveness of DADA both qualitatively and quantitatively.
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