Zhang, Fahong und Shi, Yilei und Zhu, Xiao Xiang (2022) Domain-Agnostic Domain Adaption for Building Footprint Extraction. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 318-321. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883996.
PDF
13MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9883996
Kurzfassung
For global range satellite imaging mission, images captured from different areas may have large distribution biases due to different illuminations, shooting angles and atmospheric conditions. A straightforward idea to mitigate this problem is to categorize the images into different domains according the cities they belong to, and apply domain adaptation approaches. However, categorization by cities becomes unreasonable with the increase of the city number, and the emergence of inter-city similarity and intra-city discrepancy. With such consideration, this paper proposes a novel domain adaptation method named domain-agnostic domain adaptation (DADA) to reduce the distribution biases without explicitly defining the domain each image belongs to. To implement this, we augment the images to the styles of different domains by Generative Adversarial Networks (GAN) and contrastive learning to increase the generalizability of down-stream tasks. Experiments on Planetscope building footprint extraction datasets verify the effectiveness of our method.
elib-URL des Eintrags: | https://elib.dlr.de/193318/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Domain-Agnostic Domain Adaption for Building Footprint Extraction | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883996 | ||||||||||||||||
Seitenbereich: | Seiten 318-321 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | DADA, GAN | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Hinterlegt am: | 16 Jan 2023 08:41 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags