elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Self Supervised Learning for Few Shot Hyperspectral Image Classification

Ait Ali Braham, Nassim and Mou, LiChao and Chanussot, Jocelyn and Mairal, Julien and Zhu, Xiao Xiang (2022) Self Supervised Learning for Few Shot Hyperspectral Image Classification. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 267-270. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884494.

[img] PDF
1MB

Official URL: https://ieeexplore.ieee.org/document/9884494

Abstract

Deep learning has proven to be a very effective approach for Hyperspectral Image (HSI) classification. However, deep neural networks require large annotated datasets to generalize well. This limits the applicability of deep learning for HSI classification, where manually labelling thousands of pixels for every scene is impractical. In this paper, we propose to leverage Self Supervised Learning (SSL) for HSI classification. We show that by pre-training an encoder on unlabeled pixels using Barlow-Twins, a state-of-the-art SSL algorithm, we can obtain accurate models with a handful of labels. Experimental results demonstrate that this approach significantly outperforms vanilla supervised learning.

Item URL in elib:https://elib.dlr.de/193316/
Document Type:Conference or Workshop Item (Speech)
Title:Self Supervised Learning for Few Shot Hyperspectral Image Classification
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Ait Ali Braham, NassimUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mou, LiChaoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Chanussot, JocelynInstitute Nationale Polytechnique de GrenobleUNSPECIFIEDUNSPECIFIED
Mairal, JulienInstitute Nationale Polytechnique de GrenobleUNSPECIFIEDUNSPECIFIED
Zhu, Xiao XiangUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2022
Journal or Publication Title:International Geoscience and Remote Sensing Symposium (IGARSS)
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
DOI:10.1109/IGARSS46834.2022.9884494
Page Range:pp. 267-270
Publisher:IEEE - Institute of Electrical and Electronics Engineers
Status:Published
Keywords:Deep Learning, Self Supervised Learning, Hyperspectral Image classification
Event Title:IGARSS 2022
Event Location:Kuala Lumpur, Malaysia
Event Type:international Conference
Event Start Date:17 July 2022
Event End Date:22 July 2022
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Artificial Intelligence
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Haschberger, Dr.-Ing. Peter
Deposited On:16 Jan 2023 08:40
Last Modified:24 Apr 2024 20:54

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.