Ait Ali Braham, Nassim and Mou, LiChao and Chanussot, Jocelyn and Mairal, Julien and Zhu, Xiao Xiang (2022) Self Supervised Learning for Few Shot Hyperspectral Image Classification. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 267-270. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884494.
PDF
1MB |
Official URL: https://ieeexplore.ieee.org/document/9884494
Abstract
Deep learning has proven to be a very effective approach for Hyperspectral Image (HSI) classification. However, deep neural networks require large annotated datasets to generalize well. This limits the applicability of deep learning for HSI classification, where manually labelling thousands of pixels for every scene is impractical. In this paper, we propose to leverage Self Supervised Learning (SSL) for HSI classification. We show that by pre-training an encoder on unlabeled pixels using Barlow-Twins, a state-of-the-art SSL algorithm, we can obtain accurate models with a handful of labels. Experimental results demonstrate that this approach significantly outperforms vanilla supervised learning.
Item URL in elib: | https://elib.dlr.de/193316/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Self Supervised Learning for Few Shot Hyperspectral Image Classification | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884494 | ||||||||||||||||||||||||
Page Range: | pp. 267-270 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Deep Learning, Self Supervised Learning, Hyperspectral Image classification | ||||||||||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Deposited On: | 16 Jan 2023 08:40 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page