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ABSTRACT

Deep learning has proven to be a very effective approach
for Hyperspectral Image (HSI) classification. However, deep
neural networks require large annotated datasets to general-
ize well. This limits the applicability of deep learning for
HSI classification, where manually labelling thousands of
pixels for every scene is impractical. In this paper, we pro-
pose to leverage Self Supervised Learning (SSL) for HSI
classification. We show that by pre-training an encoder on
unlabeled pixels using Barlow-Twins, a state-of-the-art SSL
algorithm, we can obtain accurate models with a handful of
labels. Experimental results demonstrate that this approach
significantly outperforms vanilla supervised learning.

Index Terms— Hyperspectral Image Classification, Self
Supervised Learning, Few Shot Classification

1. INTRODUCTION

Hyperspectral images can capture very rich information about
the physical characteristics of objects in a scene. This unique
property of hyperspectral data, coupled with an increasing
availability of cost-effective sensors, and an improving spa-
tial and spectral resolutions, has enabled many applications
in agriculture, environmental monitoring, biomedical imag-
ing, and many others. This has called for the development of
many hyperspectral image analysis algorithms, especially for
HSI classification.

HSI classification has received considerable attention
from the remote sensing community. Earlier approaches typi-
cally relied on a two-steps procedure: (i) a feature extraction
step; (ii) a shallow classifier such as SVM. Nowadays, deep
learning has become the dominant approach for this prob-
lem thanks to the ability of neural networks to extract highly
non-linear relationships from raw data

Unfortunately, training deep models following the super-
vised learning paradigm requires large amounts of well an-
notated samples to generalize and avoid overfitting. On the
other hand, accurately labelling thousands of pixels in a hy-
perspectral image is very tedious, costly, and requires expert

knowledge. This limitation can severely impede the appli-
cability of deep learning on hyperspectral data. To mitigate
this issue, a lot of efforts have been devoted to develop more
label efficient methodologies, such as semi-supervised learn-
ing, meta-learning and weakly-supervised learning. These
paradigms have been utilized on hyperspectral data as well
[1, 2, 3] showing promising results. Yet, the problem of label
efficient HSI classification remains open.

In this paper, we propose to leverage recent progress in
Self Supervised Learning (SSL) [4] to enable accurate HSI
classification with limited labels. Specifically, we show that
state-of-the-art SSL algorithms from the computer vision lit-
erature can be used to pre-train models using unlabeled pixels
in a scene. By doing so, one can quickly adapt such pre-
trained models for classification with only few labels. In addi-
tion, we demonstrate how inductive priors, such as the spatial
regularity of a scene, can be easily incorporated into the pre-
training stage through an appropriate pair-sampling strategy.
Finally, we also analyze the impact of data augmentation on
the performance of SSL on hyperspectral data. Our approach
is compatible with all joint-embedding SSL methods and can
be applied to pixel-level and patch-level HSI classification.
The results we obtain show that the proposed pipeline is far
superior to a supervised learning baseline.

2. PROPOSED APPROACH

2.1. Overview

Let X ∈ RN×M×C be a hyperspectral image. We denote
by x ∈ Rp×p×d a hypercube of size p × p sampled from the
scene (or a pixel when p = 1). The goal is to pre-train an
encoder f on unlabeled pixels using SSL, and use f to train a
classification model g on the set of labeled pixels. The overall
approach is depicted in Fig. 1.

We follow a two-stages procedure consisting of a pre-
training and a classification phase. It is a classical approach
in unsupervised learning which has also been used for HSI
classification [1]. However, modern SSL methods are still
under-studied on hyperspectral data, even though some recent
studies for clustering and classification are emerging [5, 6].
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Fig. 1: Overview of the proposed approach: pre-train using SSL and use the resulting encoder for HSI classification.

2.2. Pre-training Stage

For pre-training, we treat all pixels as unlabeled and train an
encoder f using Barlow-Twins [7], which we describe below.

Barlow-Twins is an SSL algorithm based on redundancy
minimization. Specifically, from an input x, two views xA =
TA(x) and xB = TB(x) are stochastically generated using
two sets of augmentations TA, TB . In this work, we also
leverage spatial information to create the views by sampling
partially overlapping patch pairs (see Section 2.4). The views
are fed into a shared encoder f to obtain their representa-
tions hA = f(xA) and hB = f(xB). Then, an additional
Multi-Layer Percepteron (MLP) head is applied to get zA =
MLP (hA) and zB = MLP (hB). Since xA and xB are aug-
mented views, their representations should be similar. More-
over, following the redundancy minimization principle, the
dimensions of zA and zB should be decorrelated. This can be
enforced on a batch-level by optimizing the following loss:

L =
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance to augmentation

+ λ
∑
i

∑
j ̸=i

C2
ij︸ ︷︷ ︸

redundancy reduction

(1)

where λ ∈ R+ is a trade-off parameter and C is the cross-
correlation matrix computed between the outputs ZA and ZB

of the network branches along the batch dimension:

Cij =
∑

b z
A
b,iz

B
b,j√∑

b

(
zAb,i

)2
√∑

b

(
zBb,j

)2
(2)

2.3. Classification Stage

The pre-training step produces an encoder f which has learnt
useful representations for the pixels in the scene. The goal of

the second step is to leverage this pre-trained model to con-
struct a classifier g. For this purpose, we use two common
approaches: linear classification and finetuning.

1. Linear Classification: the linear protocol constructs a
linear classifier l on top of the representations produced
by f . The classifier is g = l ◦f , where f is kept frozen.

2. Finetuning: the finetuning protocol uses the encoder’s
weights as an initialization to train the classifier g =
l ◦ f . All the parameters of f are trainable. Therefore,
special care must be taken to avoid overfitting or mov-
ing away too quickly from the initial pre-trained model.

2.4. Views generation

SSL algorithms heavily depend on the view-generation strat-
egy, which is traditionally done by stochastically augmenting
the same input. In this work, we leverage spatial information
combined with data augmentation to generate the views.

2.4.1. Pair Sampling

Since patches come from a unique scene, we can exploit spa-
tial locality to sample pairs before data augmentation. Specif-
ically, instead of augmenting the same hypercube x, we take
x and an overlapping patch x′ as a pair. By ensuring a rea-
sonable overlap between x and x′ (e.g., 50% at least), we can
safely assume that they should have similar representations.

A similar idea can be applied at pixel-level. For example,
given a pixel x, we propose to randomly select another pixel
x′ from a pre-defined neighborhood and use (x, x′) as a pair.

Such sampling strategies introduce a spatial regularity
prior into pre-training. Moreover, they provide a supervision
signal without data augmentation, which reduces the need
for aggressive transformations as commonly done in SSL.
Similar ideas have been used for SSL on satellite imagery [8].
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Fig. 2: Impact of data augmentation on SSL for PaviaU.

2.4.2. Data Augmentation

We consider two classes of transforms in this work: spatial
and spectral augmentations. Spatial augmentations require a
sufficiently large spatial context, but they preserve spectral
information. Spectral transform on the other hand can be used
for individual pixels, but may distort the semantics of the data.
Below we list the augmentations we experiment with.

1. Spatial Transforms: random flipping (horizontal or
vertical), random rotation (by multiples of 90 degrees),
random resized crop. These are identical to classical
transforms on images and implemented in PyTorch.

2. Spectral Transforms: scaling, Gaussian noise, ran-
dom band dropping, random pixel removal, random
band swapping (adjacent bands) and random transla-
tion (adding a random bias to the spectrum).

3. EXPERIMENTAL SETTING

3.1. Data

We evaluate the approach on Pavia and Houston University
datasets. Pavia University is a 610× 340 pixels scene with 9
classes and 103 bands ranging from 0.43 to 0.86 µm. Houston
University is a 349 × 1905 with 144 bands ranging from 0.36
to 1.04 µm and 15 classes. All bands are used in our experi-
ments without any pre-processing (besides normalization).

For both datasets, we use multiple training maps. Specif-
ically, we consider a few-shot setting where we randomly se-
lect K ∈ [5, 10] labeled pixels per class. In addition, we
consider an abundant labels scenario using the training maps
provided in [9], which are much more challenging than ran-
dom sampling.

3.2. Models and Metrics

We consider simple models for HSI classification. Specif-
ically, in the patch-level setting, we rely on a custom 2D

Convolutional Neural Network (CNN) with 2 residual blocks.
The patch-size we use is 9×9. For the 1D case, we use a sim-
ilar 1D CNN architecture with 2 residual blocks.

In all experiments, Barlow-Twins pre-training is ran for
100 epochs with LARS optimizer. Classification models are
trained for 100 epochs using stochastic gradient descent with
a cross-entropy loss. We report the Overall Accuracy (OA)
and the Kappa coefficient (κ) in the experiments and compare
against a supervised baseline using the same networks.

4. EXPERIMENTAL RESULTS

4.1. Impact of Data Augmentation

We analyze the impact of data augmentation on the overall
accuracy of Barlow-Twins on PaviaU with a linear classifier
using the training map from [9]. To do so, we consider up
to two augmentations at a time. We run the pre-training and
classification phase for every pair of transformations listed in
Section 2.4. The transforms are applied in both branches in
a symmetric manner with a fixed order and probability p =
0.75. Results are presented as a symmetric matrix in Fig. 2.

We observe that the transforms which work best on aver-
age are random flipping, Gaussian noise, random band drop-
ping and random band swapping. Moreover, a part from a
few exceptions, the diagonal values of the matrix (i.e., when
a single transform is used) are usually lower than the off-
diagonals (i.e., transformation pairs). Additionally, when dis-
carding all transformations, we get 79.4% of accuracy, which
confirms the need for data augmentation. Yet, accumulating
many transforms can be problematic with hyperspectral im-
ages since, contrarily to RGB data, the relevant information
lies in the spectrum of every pixel.

K=5 K=6 K=7 K=8 K=9 K=10

Supervised OA 61.2 67.3 59.6 69.4 76.8 74.7
κ 52.2 58.7 50.3 62.3 70.0 67.4

BT + Lin OA 80.6 82.9 86.7 84.9 87.2 90.3
κ 75.3 78.4 82.8 80.8 83.6 87.4

BT + Tune OA 79.2 82.3 87.0 83.5 87.7 89.9
κ 73.2 77.6 83.2 79.3 84.1 86.9

Table 1: Classification results on Pavia University with lim-
ited labels using 2D CNNs.

K=5 K=6 K=7 K=8 K=9 K=10

Supervised OA 60.0 65.9 64.9 68.7 71.4 75.0
κ 56.9 63.2 62.2 66.3 69.2 73.1

BT + Lin OA 74.4 73.3 77.9 74.1 77.0 80.5
κ 72.5 71.2 76.2 72.2 75.2 79.0

BT + Tune OA 72.9 72.5 76.2 74.2 76.1 82.0
κ 70.7 70.4 74.4 72.3 74.3 80.7

Table 2: Classification results on Houston University with
limited labels using 2D CNNs.
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4.2. 2D Results

We run the proposed SSL-based approach on PaviaU and
Houston with a varying number of samples per class using a
2D CNN. For these experiments, we use flipping, Gaussian
noise, random band dropping and random band swapping for
data augmentation. Results are given in Table 1 and Table 2,
where BT denotes Barlow-Twins. In every setting, SSL out-
performs vanilla supervised learning by significant margins
and proves to be more label efficient. Furthermore, the benefit
of using SSL is also visible even when labels are abundant,
as shown in Table 3. Moreover, it is interesting to observe
that the linear protocol (BT + Lin) and the finetuning protocol
(BT + Tune) lead to comparable results, even-though most
of the network parameters in the linear case are trained in
an unsupervised way. This shows that the model has learnt
useful features during the pre-training phase. In addition, the
linear protocol is also less prone to overfitting.

PaviaU Houston
OA κ OA κ

Supervised 88.4 84.8 77.6 75.8
BT + Lin 88.9 85.1 78.4 76.6

BT + Tune 88.5 84.7 81.0 79.4

Table 3: Classification results on Pavia and Houston Univer-
sity with large training maps using 2D CNNs.

4.3. 1D Results

We train a BT + Lin classifier on PaviaU using 1D CNN. We
generate the pairs using neighboring pixels (in a 5× 5 neigh-
borhood). We do not apply any data augmentation because
preliminary experiments suggest that it does not always help
with 1D CNNs. The results are shown in Table 4. Once again,
we observe that SSL outperforms supervised learning when
the labels are limited. It is also the case on the full split, where
supervised learning reaches 80.9% of accuracy compared to
86.2% for BT + Lin.

K=5 K=6 K=7 K=8 K=9 K=10

Supervised OA 43.5 64.6 57.6 58.2 65.8 65.8
κ 36.9 55.3 50.1 50.4 57.1 56.3

BT + Lin OA 70.0 77.6 86.8 83.5 85.8 88.0
κ 63.1 71.9 82.8 79.0 81.8 84.5

Table 4: Classification results on Pavia University with lim-
ited labels using 1D CNNs.

5. CONCLUSION

In this paper, we have used Barlow-Twins, a state-of-the-art
SSL algorithm, for few shot HSI classification. We have pro-
posed pair sampling strategies for patches and pixels, and
have investigated several data augmentations and their impact

on performance. Our experimental results suggest that SSL
outperforms plain supervised learning and improves label ef-
ficiency. Future work will investigate more data driven view
generation strategies for SSL on hyperspectral data.

6. REFERENCES

[1] Lichao Mou, Pedram Ghamisi, and Xiao Xiang Zhu,
“Unsupervised spectral–spatial feature learning via deep
residual conv–deconv network for hyperspectral image
classification,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 56, no. 1, pp. 391–406, 2017.

[2] Hao Wu and Saurabh Prasad, “Semi-supervised deep
learning using pseudo labels for hyperspectral image
classification,” IEEE Transactions on Image Processing,
vol. 27, no. 3, pp. 1259–1270, 2017.

[3] Bing Liu, Xuchu Yu, Anzhu Yu, Pengqiang Zhang, Gang
Wan, and Ruirui Wang, “Deep few-shot learning for hy-
perspectral image classification,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 57, no. 4, pp. 2290–
2304, 2018.

[4] Longlong Jing and Yingli Tian, “Self-supervised visual
feature learning with deep neural networks: A survey,”
IEEE transactions on pattern analysis and machine intel-
ligence, 2020.

[5] Yaoming Cai, Zijia Zhang, Yan Liu, Pedram Ghamisi,
Kun Li, Xiaobo Liu, and Zhihua Cai, “Large-scale hy-
perspectral image clustering using contrastive learning,”
arXiv preprint arXiv:2111.07945, 2021.

[6] Bing Liu, Anzhu Yu, Xuchu Yu, Ruirui Wang, Kuiliang
Gao, and Wenyue Guo, “Deep multiview learning for
hyperspectral image classification,” IEEE Transactions
on Geoscience and Remote Sensing, 2020.

[7] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun,
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