elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Self Supervised Learning for Few Shot Hyperspectral Image Classification

Ait Ali Braham, Nassim und Mou, LiChao und Chanussot, Jocelyn und Mairal, Julien und Zhu, Xiao Xiang (2022) Self Supervised Learning for Few Shot Hyperspectral Image Classification. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 267-270. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884494.

[img] PDF
1MB

Offizielle URL: https://ieeexplore.ieee.org/document/9884494

Kurzfassung

Deep learning has proven to be a very effective approach for Hyperspectral Image (HSI) classification. However, deep neural networks require large annotated datasets to generalize well. This limits the applicability of deep learning for HSI classification, where manually labelling thousands of pixels for every scene is impractical. In this paper, we propose to leverage Self Supervised Learning (SSL) for HSI classification. We show that by pre-training an encoder on unlabeled pixels using Barlow-Twins, a state-of-the-art SSL algorithm, we can obtain accurate models with a handful of labels. Experimental results demonstrate that this approach significantly outperforms vanilla supervised learning.

elib-URL des Eintrags:https://elib.dlr.de/193316/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Self Supervised Learning for Few Shot Hyperspectral Image Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ait Ali Braham, NassimNassim.AitAliBraham (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mou, LiChaoLiChao.Mou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Chanussot, JocelynInstitute Nationale Polytechnique de GrenobleNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mairal, JulienInstitute Nationale Polytechnique de GrenobleNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2022
Erschienen in:International Geoscience and Remote Sensing Symposium (IGARSS)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/IGARSS46834.2022.9884494
Seitenbereich:Seiten 267-270
Verlag:IEEE - Institute of Electrical and Electronics Engineers
Status:veröffentlicht
Stichwörter:Deep Learning, Self Supervised Learning, Hyperspectral Image classification
Veranstaltungstitel:IGARSS 2022
Veranstaltungsort:Kuala Lumpur, Malaysia
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:17 Juli 2022
Veranstaltungsende:22 Juli 2022
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Haschberger, Dr.-Ing. Peter
Hinterlegt am:16 Jan 2023 08:40
Letzte Änderung:24 Apr 2024 20:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.