Li, Qingyu and Shi, Yilei and Zhu, Xiao Xiang (2022) Feature and Output Consistency Training for Semi-Supervised Building Footprint Generation. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 171-174. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883979.
PDF
1MB |
Official URL: https://ieeexplore.ieee.org/document/9883979
Abstract
Building footprint maps are important to urban planning and monitoring. However, most existing approaches that fall back on convolutional neural networks (CNNs), require massive annotated samples for network learning. In this research, we propose a novel semi-supervised network, which can help to deal with this issue by leveraging a large amount of unlabeled data. Considering that rich information is also encoded in feature maps, we propose to integrate the consistency of both features and outputs in the end-to-end network training of unlabeled samples on data perturbation, enabling to impose additional constraints. Experiments are conducted on Inria dataset. Our approach is much superior to the state-of-the-art methods in both quantitative and qualitative results.
Item URL in elib: | https://elib.dlr.de/193313/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Feature and Output Consistency Training for Semi-Supervised Building Footprint Generation | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883979 | ||||||||||||||||
Page Range: | pp. 171-174 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | CNN, urban planning, semi-supervised | ||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Deposited On: | 16 Jan 2023 08:40 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page