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ABSTRACT

Building footprint maps are important to urban planning and
monitoring. However, most existing approaches that fall back
on convolutional neural networks (CNNs), require massive
annotated samples for network learning. In this research, we
propose a novel semi-supervised network, which can help to
deal with this issue by leveraging a large amount of unlabeled
data. Considering that rich information is also encoded in
feature maps, we propose to integrate the consistency of both
features and outputs in the end-to-end network training of
unlabeled samples on data perturbation, enabling to impose
additional constraints. Experiments are conducted on Inria
dataset. Our approach is much superior to the state-of-the-art
methods in both quantitative and qualitative results.

Index Terms— semantic segmentation, semi-supervised,
building, consistency training

1. INTRODUCTION

Building footprint generation is of great interest in the re-
mote sensing community and involves a wide range of ap-
plications, e.g., disaster management and urban planning.
High-resolution remote sensing imagery, which provides
huge opportunities for meaningful geospatial target extrac-
tion at a large scale, becomes a fundamental data source for
building footprint generation. Early methods focus on the
design of hand-crafted features that can best depict build-
ings. Nonetheless, the empirical feature design is satisfactory
only under specific requirements or on specific data and lacks
good generalization capabilities. Nowadays, Convolutional
Neural Networks (CNNs) have been widely used for the
task of building footprint generation from remote sensing
imagery [1] [2] [3], as they surpass conventional methods
in terms of accuracy of efficiency. CNNs can directly learn
hierarchical contextual features from the raw input and offer
greater generalization capabilities. However, there remains a
challenge for generating building footprint maps on a large
scale — massive data need to be collected to promote the
generalization performance of CNNs. However, the manual

annotation of reference data is a very time-consuming and
costly process.

Recently, several methodologies have taken advantage of
semi-supervised learning to address this issue. Among them,
consistency training-based approaches (e.g., CR [4] and PiC-
oCo [5]) not only are simple to implement but also require
no additional weakly labeled examples. Consistency training-
based methods exploit the teacher-student framework and en-
courage both the student model and teacher model to give
consistent outputs for unlabeled inputs that are perturbed in
various ways. By doing so, the generalization capability of
the network can be improved. However, there is still a cer-
tain gap in performance between these two models when the
outputs are not completely correct during training. Inspired
by [6] that more discriminative contextual information can be
captured by feature maps, we propose a new consistency loss
that measures the discrepancy between both feature maps and
outputs of student model and those of teacher model, offering
a strong constraint to regularize the learning of the network.

2. METHODOLOGY

2.1. Overview

As shown in Fig. 1, the proposed framework is composed
of a shared encoder E, a main decoder D, and an auxiliary
decoder G. The segmentation network F is constituted as
F = E ◦D and is trained on the labeled set in a fully super-
vised manner. The auxiliary network A = E ◦G is trained on
the unlabeled examples by enforcing the consistency of both
features and outputs between D and G. D takes as input the
encoder’s output zout, but G is fed with its perturbed version
z̃out, in which the perturbation p is applied to the output of
E. By doing so, the representation learning of E can be fur-
ther improved by unlabeled examples, and subsequently, that
of the segmentation network F .

2.2. Objective Function

In the proposed approach, labeled and unlabeled data are
jointly trained by minimizing a global loss function L as
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Fig. 1. Overview of the proposed approach.

below:

L = Ls + λu · Lcons , (1)

where Ls is a supervised loss on labeled data. λu is a weight-
ing function to control the importance of a consistency loss
term Lcons. Note that Lcons is not backpropagated through
D, and D is trained only by labeled examples. By doing
so, D is only trained on original input data. This is helpful
from two aspects. On the one hand, it can avoid collapsing
solutions. If Lcons is backpropagated through both main de-
coder D and auxiliary decoder G, main decoder D will col-
lapse since Lcons will be minimized if predictions of both D
and G are zeros. On the other hand, the method can be better
adapted to the test stage since no perturbation is applied to
test images.

For the labeled set, a supervised loss Ls is exploited to
train the segmentation network F . In order to avoid overfit-
ting, an annealed version of the bootstrapped Cross-Entropy
loss [7] is chosen to compute the supervised loss Ls, and it is
denoted as:

Ls =
1

|Sl|
∑

xl
i,yi∈Sl

{F (xl
i) < η}H(yi, F (xi)) , (2)

where F (xi) is the output probability from F for a labeled
example xi, yi is its ground reference label, and H(., .) is the

cross entropy-based loss. In order to avoid overfitting, Ls is
computed only over the pixels with a probability less than the
threshold η that serves as a ceiling to prevent over-training on
easily labeled data [8]. Following [7], we gradually increase
η from 0.5 to 0.9 during the beginning of training.

For an unlabeled example xu
i , zout is derived as the out-

put from the shared encoder E. Afterward, the perturbation
is applied to the output of the encoder E and the perturbed
encoder’s output z̃out is generated. Finally, zout and z̃out are
taken as input for D and G, respectively.

The training objective of the unlabeled set is to minimize
a consistency loss Lcons, which is defined as:

Lcons = Lup + ωu · Luf , (3)

where Luf and Lup measure the discrepancy between the fea-
tures and outputs of D and those of G, respectively. ωu is a
hyperparameter to introduce a weight to model the relative
importance of two losses. More specifically, Lup is defined
as:

Lup =
1

|Su|
∑

xu
i ∈Su

T(D(zout), G(z̃out)) , (4)

with T(., .) as mean squared error-based loss.
Note that the contribution of our approach is that a loss

term Luf is introduced into the proposed network by impos-
ing the consistency on features between the main decoder and
auxiliary decoder, which is able to harness the detailed infor-
mation in the feature maps. Let ϕj(q) be the activations of the
jth layer of the network ϕ when processing the input q. For
D and G, Dj(zout) and Gj(z̃out) will be the corresponding
feature maps at jth depth in the decoder. Here, j represents
the position where upsampling operations are applied in the
decoder. Then, Luf is denoted as:

Luf =
1

|Su|
∑

xu
i ∈Su

J∑
j=1

T(Dj(zout), Gj(z̃out)) , (5)

where J is the total number of depth in the decoder. In other
words, J represents how many upsampling operations are ap-
plied in the decoder.

3. EXPERIMENT

The effectiveness of the proposed method is validated on the
Inria dataset [9], which is a benchmark dataset consisting of
360 large-scale aerial images, in which each image is of the
size of 5000 × 5000 and has three bands (i.e., red, green,
blue) at a spatial resolution of 0.3 m/pixel. The ground refer-
ence building masks of this dataset are only publicly released
for five cities (Austin, Chicago, Kitsap County, Western Ty-
rol, and Vienna). All aerial images and ground-truth building
masks are cut into small patches with the size of 256 × 256
pixels. Data split in the Inria dataset is according to the setup
in [9]. More specifically, for each city, images with ids 1-5
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Results obtained from (a) SL, (b) CCT [7], (c) CR [4], (d) PiCoCo [5], and (e) proposed method. In this experiment,
the ratio of labeled data to unlabeled data is 1:10 (3600 labeled, 36252 unlabeled). (f) is aerial imagery from the Inria dataset
(spatial resolution: 0.3 m/pixel). Pixel-based true positives, false positives, and false negatives are marked in white, green, and
red, respectively.

are used for validation, and the remaining 31 images are for
training. Afterward, we randomly split the training data into
two parts, which are labeled set and unlabeled set, and the
pixel-level annotations are excluded in the unlabeled set. Un-
der the semi-supervised setting, the ratios of labeled data to
unlabeled data are set as 1:10. The statistics are derived from
the validation set.

In order to validate the superiority of our methods, we
make a comparison with other competitors, including Super-
vised Learning (SL), CCT [7], CR [4] and PiCoCo [5]. SL
is regarded as the baseline method that is only trained with
labeled data. CCT [7], CR [4] and PiCoCo [5] are the state-
of-the-art consistency training-based semantic segmentation
methods where labeled and unlabeled data are jointly trained.
The hyperparameters λu and ωu are set as 0.6 and 0.2 for
our method, respectively. All methods exploit Efficient-UNet
[10] as the backbone and are implemented in a Pytorch frame-
work on an NVIDIA Tesla with 16 GB of memory. All meth-
ods are trained by an optimizer of Adam with a learning rate

of 0.1, and the training batch size of all models is set as 4.

4. RESULTS

The performance of all models is evaluated by F1-Score and
Intersection Over Union (IoU). Table 1 and Fig 2 present
the quantitative and qualitative results of all methods. Our
proposed approach outperforms both supervised and semi-
supervised methods in terms of F1 score and IoU. Notable,
our method can effectively avoid more false alarms than other
methods. This suggests that the proposed method has a bet-
ter capability of utilizing unlabeled data to improve network
performance.

5. CONCLUSION

In this paper, we have proposed a novel semi-supervised net-
work that generates building footprints based on feature and
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Table 1. Accuracy indices of different methods derived from
the validation set of Inria dataset.

Method F1-Score IoU
SL 77.87 % 64.12 %
CCT [7] 83.00 % 70.93 %
CR [4] 78.27 % 64.30 %
PiCoCo [5] 80.91 % 67.94 %
Proposed method 83.74 % 72.03 %

output consistency training. We evaluate our approach on In-
ria dataset. Experimental results have demonstrated that our
method is more competitive when compared with the state-
of-the-art supervised and semi-supervised semantic segmen-
tation methods. Notable that our method can offer more satis-
factory building footprints, where omission errors can be al-
leviated to a large extent. In this regard, other works that only
have limited labeled samples will benefit from the proposed
approach.
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