elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Deep Learning for Aerial Scene Understanding in High Resolution Remote Sensing Imagery from the Lab to the Wild

Hua, Yuansheng (2022) Deep Learning for Aerial Scene Understanding in High Resolution Remote Sensing Imagery from the Lab to the Wild. Dissertation, Technical University of Munich.

[img] PDF
88MB

Official URL: https://mediatum.ub.tum.de/603790?show_id=1638090

Abstract

Diese Arbeit präsentiert die Anwendung von Deep Learning beim Verständnis von Luftszenen, z. B. Luftszenenerkennung, Multi-Label-Objektklassifizierung und semantische Segmentierung. Abgesehen vom Training tiefer Netzwerke unter Laborbedingungen bietet diese Arbeit auch Lernstrategien für praktische Szenarien, z. B. werden Daten ohne Einschränkungen gesammelt oder Annotationen sind knapp.

Item URL in elib:https://elib.dlr.de/193260/
Document Type:Thesis (Dissertation)
Title:Deep Learning for Aerial Scene Understanding in High Resolution Remote Sensing Imagery from the Lab to the Wild
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Hua, YuanshengUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2022
Journal or Publication Title:mediaTUM
Refereed publication:No
Open Access:Yes
Number of Pages:214
Status:Published
Keywords:Deep Learning, KI, AI4EO, Fernerkundung
Institution:Technical University of Munich
Department:School of Engineering and Design
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Artificial Intelligence
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Rösel, Dr. Anja
Deposited On:12 Jan 2023 17:40
Last Modified:13 Jan 2023 14:16

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.