Hua, Yuansheng (2022) Deep Learning for Aerial Scene Understanding in High Resolution Remote Sensing Imagery from the Lab to the Wild. Dissertation, Technical University of Munich.
PDF
88MB |
Official URL: https://mediatum.ub.tum.de/603790?show_id=1638090
Abstract
Diese Arbeit präsentiert die Anwendung von Deep Learning beim Verständnis von Luftszenen, z. B. Luftszenenerkennung, Multi-Label-Objektklassifizierung und semantische Segmentierung. Abgesehen vom Training tiefer Netzwerke unter Laborbedingungen bietet diese Arbeit auch Lernstrategien für praktische Szenarien, z. B. werden Daten ohne Einschränkungen gesammelt oder Annotationen sind knapp.
Item URL in elib: | https://elib.dlr.de/193260/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Document Type: | Thesis (Dissertation) | ||||||||
Title: | Deep Learning for Aerial Scene Understanding in High Resolution Remote Sensing Imagery from the Lab to the Wild | ||||||||
Authors: |
| ||||||||
Date: | 2022 | ||||||||
Journal or Publication Title: | mediaTUM | ||||||||
Refereed publication: | No | ||||||||
Open Access: | Yes | ||||||||
Number of Pages: | 214 | ||||||||
Status: | Published | ||||||||
Keywords: | Deep Learning, KI, AI4EO, Fernerkundung | ||||||||
Institution: | Technical University of Munich | ||||||||
Department: | School of Engineering and Design | ||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||
HGF - Program: | Space | ||||||||
HGF - Program Themes: | Earth Observation | ||||||||
DLR - Research area: | Raumfahrt | ||||||||
DLR - Program: | R EO - Earth Observation | ||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||
Location: | Oberpfaffenhofen | ||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||
Deposited By: | Rösel, Dr. Anja | ||||||||
Deposited On: | 12 Jan 2023 17:40 | ||||||||
Last Modified: | 13 Jan 2023 14:16 |
Repository Staff Only: item control page