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Abstract

The substantial progress of remote sensing technologies makes aerial images available in
large numbers, which benefits a variety of applications, such as urban planning and terrain
surface analysis. As a fundamental bridge between such applications and high resolution
aerial imagery, aerial scene understanding has attracted increasing attention over the
past few years, and manifold efforts have been made from three perspectives: scene-level,
object-level, and pixel-level understanding of aerial scene images. Specifically, scene-level
understanding refers to recognizing scene categories of aerial images, and object-level
understanding is to identify all co-occurring objects in each image. Besides, pixel-level
aerial scene understanding is achieved by identifying the semantic class of every single pixel
and producing a semantic mask for each aerial scene image. These three levels are termed
as aerial scene recognition, multi-label object classification, and semantic segmentation of
aerial imagery in this dissertation.

Thanks to the revolutionary progress made by deep learning, great achievements have
been obtained in aerial scene understanding. However, most of the existing researches are
conducted under the laboratory circumstance, where constraints are imposed on exper-
imental prerequisites and data preparation. As a consequence, the deployment of deep
learning models in the wild is a severe predicament, as abundant training samples with
precise and complete annotations are scarcely available. To understand aerial scenes and
take a step beyond the laboratory scenario, this dissertation makes contributions from the
following perspectives:

e For a holistic object understanding of aerial scene images, we propose to encode
underlying label correlations with a bidirectional LSTM and a relational network
and devise two multi-label object classification networks, respectively. In addition,
two multi-label aerial image datasets are proposed to facilitate the progress of object-
level scene understanding.

e As an attempt to bridge gaps between aerial scene recognition in the lab and wild,
we propose to learn prototype representations of aerial scenes from numerous labeled
constrained images, and predict unconstrained aerial images by measuring relevances
between images and scene prototypes.

e To address data efficiency in multi-scene recognition, we propose a large-scale
dataset, MultiScene, for multi-scene recognition in single images, which is featured
by unconstrained multi-scene aerial images and the available both crowdsourced and
clean labels.

e In order to train aerial scene parsing models with sparse annotations, we propose an
annotation-friendly framework, where annotators only need to label several pixels
with easy-to-draw scribbles. To exploit these sparse scribbled annotations, feature
and spatial relationships among pixels are encoded for semi-supervised learning of
semantic segmentation networks.
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Zusammenfassung

Der grofle Fortschritt der Fernerkundungstechnologien macht Luftbilder in grofler Zahl
verfiigbar, was einer Vielzahl von Anwendungen zugutekommt, beispielsweise der Stadtpla-
nung und der Geldndeanalyse. Als grundlegende Briicke zwischen solchen Anwendungen
und hochauflésenden Luftbildern hat das Verstédndnis von Luftaufnahmen in den letzten
Jahren zunehmende Aufmerksamkeit auf sich gezogen, und es wurden vielféltige Anstren-
gungen aus drei Perspektiven unternommen: Verstédndnis auf Szenen ebene, Objektebene
und Pixelebene von Luftbildaufnahmen. Insbesondere bezieht sich das Verstandnis auf
Szenen ebene auf das Erkennen von Szenekategorien von Luftbildern, und das Verstédndnis
auf Objektebene besteht darin, alle gleichzeitig auftretenden Objekte in jedem Bild zu
identifizieren. Aulerdem wird ein Verstdndnis von Luftszenen auf Pixelebene erreicht, in-
dem die semantische Klasse jedes einzelnen Pixels identifiziert und eine semantische Maske
fiir jedes Luftszenenbild erzeugt wird. Diese drei Ebenen werden in dieser Dissertation als
Luftszeneverkennung, Multi-Label-Objektklassifizierung und semantische Segmentierung
von Luftbildern bezeichnet.

Dank der revolutiondren Fortschritte, die durch Deep Learning erzielt wurden, wurden
zahlreiche Errungenschaften beim Verstandnis von Luftbildszenen erzielt. Die meisten der
bestehenden Forschungen werden jedoch unter Laborbedingungen durchgefithrt, wobei
den experimentellen Voraussetzungen und der Datenaufbereitung Beschrankungen aufer-
legt werden. Infolgedessen ist der FEinsatz von Deep-Learning-Modellen in freier Wildbahn
eine ernste Notlage, da kaum Trainingsbeispiele mit prazisen und vollstdndigen Annota-
tionen zur Verfiigung stehen. Um Luftaufnahmen zu verstehen und einen Schritt iiber das
Laborszenario hinauszugehen, liefert diese Dissertation Beitrage aus folgenden Perspek-
tiven:

e Fiir ein ganzheitliches Objektverstandnis von Luftszenenbildern schlagen wir
vor, zugrundeliegende Label-Korrelationen mit einem bidirektionalen LSTM
und einem relationalen Netzwerk zu kodieren und jeweils zwei Multi-Label-
Objektklassifizierungsnetzwerke zu konzipieren erleichtern den Fortschritt des Szen-
everstiandnisses auf Objektebene.

e Als Versuch, die Liicken zwischen der Luftbilderkennung im Labor und in der Wildnis
zu schlieflen, schlagen wir vor, Prototypdarstellungen von Luftbildszenen aus zahlre-
ichen gekennzeichneten eingeschrankten Bildern zu lernen und uneingeschrankte
Luftbilder vorherzusagen, indem die Relevanz zwischen Bildern und Szeneprototypen
gemessen wird.

e Um die Dateneffizienz bei der Mehrszenenerkennung zu verbessern, schlagen wir
einen groflen Datensatz, MultiScene, fiir die Mehrszenenerkennung in Einzelbildern
vor, der durch uneingeschrankte Mehrszenen-Luftbilder und die verfiigharen sowohl
Crowdsourcing als auch Clean Labels gekennzeichnet ist.

e Um Luftbildszenen-Parsing-Modelle mit spérlichen Annotationen zu trainieren,
schlagen wir ein annotationsfreundliches Framework vor, bei dem Annotatoren nur



Zusammenfassung

mehrere Pixel mit einfach zu zeichnenden Scribbles beschriften miissen kodiert fiir
halbiiberwachtes Lernen von semantischen Segmentierungsnetzwerken.
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1 Introduction

1.1 Motivation and Objectives

With the tremendous advancement of earth observation technologies, a considerable vol-
ume of remote sensing images is nowadays available and benefits various real-world ap-
plications, such as urban mapping, ecological monitoring, urban planning, disaster moni-
toring, terrain surface analysis, ecological scrutiny, geomorphological analysis, and traffic
management. Among all types of images, aerial imagery captured from an aerial perspec-
tive is now drawing increasing worldwide attention due to its high spatial resolution and
real-time data acquisition. To name a few, Spanish Directorate General for Road Traffic
(Direccién General de Trafico, DGT) introduces aerial photography to traffic monitoring
by deploying unmanned aerial vehicles (UAVs) across the country'. In Qinghai, aerial
imaging techniques are exploited to inspect large areas of photovoltaic panels and detect
indiscernible panel defects in photovoltaic plants®. In January 2021, Cyclone Eloise hit
Mozambique, Malawi, Eswatini, Zimbabwe, and South Africa, and during the severe dis-
aster, leveraging aerial imagery of damaged regions helps to search for survivors and save
numerous lives from the disaster?.

As a bridge between such successful use cases and aerial imagery, aerial scene under-
standing, which aims at perceiving and interpreting aerial scenes, has attracted growing
research interests during the past decades. In these studies, a scene is defined as an asso-
ciation of multiple ground objects (e.g., cars, trees, and buildings) that vary in categories
and properties but relate to each other in a certain context, and has a specific thematic
meaning (e.g., residential, parking lot, and commercial). In comparison with the termi-
nology object, scene is a high-level and abstract concept and arduous to determine owing
to its high intra-class variation and low inter-class diversity. Therefore, to understand an
aerial scene (i.e., a scene taken from the nadir view), a human annotator or visual system
should not only identify its compositions but also parse their spatial layouts and underly-
ing correlations. This is effortless for human beings owing to their inherent capabilities of
relational reasoning but not easy for machines. Hereby, many efforts have been made to
develop intelligent visual recognition algorithms for automatically perceiving aerial scenes.
Depending on the level of detail, researches in this field can be sorted into three direc-
tions: aerial scene recognition, multi-label object classification, and semantic segmentation
of aerial imagery. More specifically, aerial scene recognition often refers to categorizing
an aerial image into one of the predefined scene classes and presents a scene-level under-
standing. Multi-label object classification aims at identifying all objects co-occurring in
each aerial image and assigning one image multiple object labels, which presents a macro-
scopic view of scene compositions. In contrast, semantic segmentation of aerial imagery

"https://trans.info/en/spain-dgt-to-use-dozens-of-control-drones-to-spot-driving-infrin
gements—-245989

*https://guangfu.bjx.com.cn/news/20200818/1098030. shtml

3https://www.nepad.org/blog/birds-eye-view-application-of-drone-technology-rapid-disast
er-response-management
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Figure 1.1: Examples of different scene understanding tasks. Given an example aerial image
(a), (b) scene recognition aims at predicting the scene category, while (¢) multi-label
object classification targets at identifying multiple co-existing objects. In (d) semantic
segmentation, the category of every pixel should be inferred. The legendary of (d)
can be referred to in (c).

interprets an image from the microscopic perspective by classifying the object category of
every single pixel. Figure 1.1 shows an example of each scene understanding task. Given
an image (Figure 1.1a), aerial scene recognition is to identify its scene label, i.e., dense
residential, while multi-label object classification targets at inferring labels of all present
objects that are building, car, grass, pavement, and tree. As to semantic segmentation of
aerial imagery, each pixel is classified into one of the predefined object types forming a
dense semantic mask of the given image.

Although enormous achievements have been obtained in aerial scene understanding
under the overwhelming trend of deep learning recently, we observe that most of them
impose constraints on experimental prerequisites and study the problem in the laboratory
circumstance. As to aerial scene recognition, researches share a common assumption
that an aerial image belongs to only one scene and thus assign each image a single label
according to its dominant or central scene. In order to comply with this assumption, data
producers should acquire and crop aerial images very prudently, ensuring that target scenes
are center-aligned in corresponding images or take their majority. Taking Figure 1.1b
as an example, the image is labeled as dense residential due to that densely connected
residential buildings and pavements occupy the majority of the given image. However,
such restrictions may trigger unexpected failures, when deploying trained models in the
real-world scenario where multiple scenes may co-exist. In addition, we can also observe
that there co-exist small-scale parking lots in Figure 1.1b, but they are neglected even
parking lot is one of the scene categories in the dataset. As a consequence, networks
may suffer from confusing supervisory signals in the training process and are prone to
learn inappropriate feature representations. Another typical prerequisite in the lab is
that annotations required for network training are sufficient and accessible, and this is
especially crucial for researches in semantic segmentation of aerial imagery. As shown in
Figure 1.1d, dense pixel-wise annotations are essential for semantic segmentation networks
to learn to predict the category of each pixel in a given aerial image. However, yielding
such annotations is extremely labor- and time-consuming due to the high complexity of
aerial image contents, such as irregular land cover boundaries and ambiguous shadowed
areas. Therefore, the problem of data insufficiency is quite common in the field of semantic
segmentation of aerial imagery, which restricts its deployment in real-world applications.



1.2 Thesis Outline

Towards a practical scenario, this dissertation aims to study aerial scene understanding
not only in the lab but also in the wild. To be more specific, we decompose the research
topic into four objectives as follows:

e Understanding aerial scenes from a fine-grained object perspective.

We observe that aerial scenes have huge intra-class variation, and images belonging
to the same scene category can have different objects even in the lab. Hence in
comparison with aerial scene recognition, identifying all objects present in an aerial
image is essential to offer a more comprehensive view and deliver richer semantic
information.

e Bridging gaps between aerial scene recognition in the lab and wild.

Aerial scene recognition in the wild is more challenging because images are collected
without any constraints, such as centering target scenes and refraining from clutter
scenes. Currently, very few efforts have been deployed in this field, and relevant
datasets are significantly scarce, which further hinders progress. Nonetheless, we
note that there is a vast number of well-annotated single-scene images in the remote
sensing community. Thus a question arises naturally that “can we apply large-scale
datasets produced for aerial scene recognition in the lab to that in the wild?”

e Data generation for aerial scene recognition in the wild.

Large-scale well-annotated data is crucial to train deep learning-based algorithms.
However, in the remote sensing community, very few datasets consist of uncon-
strained aerial images, which impedes the advancement of researches in uncon-
strained aerial scene recognition. Therefore, the community urgently needs large-
scale datasets where unconstrained aerial images are captured and assigned multiple
labels according to all present scenes.

e Learning aerial scene parsing models with sparse annotations.

Dense pixel-wise annotations are difficult to yield, limiting the number of available
datasets for semantic segmentation of aerial imagery. Besides, the huge time cost
makes it infeasible to learn aerial scene parsing models in real-world applications
that need fast responses. To mitigate the heavy annotation burden, learning deep
networks with easy-to-draw sparse annotations is now obtaining great research in-
terests, and devising efficient training pipelines will be worth the effort in future
research.

1.2 Thesis Outline

This is a cumulative dissertation that reaches the abovementioned four research objectives
in the following five peer-reviewed journal papers:

e Yuansheng Hua*, Lichao Mou*, and Xiao Xiang Zhu. Recurrently exploring class-
wise attention in a hybrid convolutional and bidirectional LSTM network for multi-
label aerial image classification. ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 149, pp. 188-199, 2019. (* equal contribution)
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e Yuansheng Hua, Lichao Mou, and Xiao Xiang Zhu. Relation network for multilabel
aerial image classification. IEEE Transactions on Geoscience and Remote Sensing,
vol. 58, no. 7, pp. 4558-4572, 2020.

e Yuansheng Hua, Lichao Mou, Jianzhe Lin, Konrad Heidler, and Xiao Xiang Zhu.
Aerial scene understanding in the wild: Multi-scene recognition via prototype-based
memory networks. ISPRS Journal of Photogrammetry and Remote Sensing, vol.
177, pp- 89-102, 2021.

e Yuansheng Hua, Lichao Mou, Pu Jin and Xiao Xiang Zhu. MultiScene: A large-
scale dataset and benchmark for multiscene recognition in single aerial images. IFEE
Transactions on Geoscience and Remote Sensing, in press, 2021.

e Yuansheng Hua, Diego Marcos, Lichao Mou, Xiao Xiang Zhu, and Devis Tuia. Se-
mantic segmentation of remote sensing images with sparse annotations. IEEE Geo-
science and Remote Sensing Letters, in press, 2021.

The remaining of this cumulative dissertation is organized as follows. Chapter 2 in-
troduces the development of deep learning and takes a glance at Convolutional Neural
Network (CNN) and semantic segmentation networks. Chapter 3 draws a picture of
researches concerning aerial scene understanding in the laboratory circumstance, while
Chapter 4 presents an insight view of aerial scene understanding in the wild. Chapter 5
summarizes our contributions in the five papers, and Chapter 6 concludes the dissertation
and presents an outlook of future works.



2 A Glance at Deep Learning

Aerial imagery has high spatial resolutions and can provide richer spatial contextual in-
formation of the earth surface, facilitating a more comprehensive view of aerial scenes.
However, as a coin has two sides, high resolution aerial images also bring great chal-
lenges to image interpretation algorithms, especially in terms of visual feature extraction.
Conventional feature extraction methods mainly rely on manually designing feature de-
scriptors, such as Gabor filters [1], Scale Invariant Feature Transform (SIFT) [2], and
Local Binary Pattern (LBP) [3], that depict local structures and textures of an image.
However, such hand-crafted descriptors can only extract low-level visual attributes and
fail to dig out discriminative semantic information. In addition, the efficiency of low-level
features depends on prior human knowledge and may not generalize across various types
of data. Therefore, a question has been raised: how to design intelligent systems that
can learn to extract high-level features automatically for visual recognition tasks? As an
early attempt, LeCun et al. [4] propose the first but shallow CNN in 1998, and prove its
effectiveness in identifying handwritings. With the great progress of computational re-
sources, Alex et al [5] bring the milestone deep CNN, i.e., AlexNet, to the public attention
and won the champion of ICLR 2012 that demonstrates its overwhelming performance.
Since then, deep learning has been the most popular and dominant solution to visual
recognition tasks. Inspired by such great success, deep learning-based algorithms have
attracted growing research interests in aerial scene understanding and obtained massive
achievements [6, 7, 8].

Therefore, before diving into deep learning scene understanding methods, we briefly
review the development of deep learning in this chapter. To be specific, Chapter 2.1
introduces popular CNN architectures, and Chapter 2.2 further delineates the application
of CNNs in the pixel-wise understanding of high resolution images.

2.1 Convolutional Neural Networks

CNNs are characterized by hierarchical stacks of convolutional and pooling layers as well
as skip connections that facilitate identical mappings. With the increasing depth of CNNs,
deeper layers are capable of extracting discriminative semantic features that are proven to
be essential for understanding image contents. To have a knowledge of CNNs, we introduce
CNN architectures that are popular and often taken as baselines in this section.

LeNet [4]. LeCun et al. first successfully train a handwriting recognition CNN; i.e.,
LeNet-5, through backpropagation. As shown in Figure 2.1, LeNet comprises three con-
volutional layers (C1, C3, and C5), two average pooling layers (S2 and S4), and one
fully-connected layer (F6). The size of all convolutional filters is 5 x 5, and the pooling
window of each downsampling layer has a size of 2 x 2 pixels. In contrast to its following
works, not all feature maps produced from S2 are taken as the input of each convolutional
filter in C3, and the sigmoid function is utilized to activate outputs of intermediate lay-
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Figure 2.1: The architecture of LeNet-5 [4]. Each plane represents a feature map. C1, C3, and
C5 are convolutional layers with 5 x 5 filters. S2 and S4 are subsampling layers that
halve the width and height of feature maps. Fé6 is a fully-connected layer.
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Figure 2.2: The architecture of VGG-16. Conv and FC stand for convolutional layer and fully-
connected layer, respectively.

ers. Experiments are conducted on the MNIST dataset!, and LeNet-5 surpasses machine
learning algorithms that showcases the competence and potential of CNNs.

AlexNet [5]. Thanks to the booming computational efficiency, CNNs are capable of
going deeper and handling images with larger scales and more complex contents. In 2012,
Krizhevsky et al. propose AlexNet and won the championship of ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) by reaching a top-5 error of 15.3%. In contrast
to the second-best model, which is built on hand-crafted features [9] and gains a top-
5 error of 26.2%, AlexNet learns to automatically extract high-level features through a
stack of convolutional and fully-connected layers. Specifically, AlexNet consists of five
convolutional layers, where filter sizes vary from 3 x 3 to 7 x 7 pixels, and three fully-
connected layers. To enlarge the channel dimension of feature maps without increasing
computational consumption, max-pooling layers are employed to reduce spatial sizes of
features before feeding them to convolutional layers with more filters. As a consequence,
the learned high-level feature maps are diverse but at the cost of losing fine-grained spatial
information. Besides, instead of the sigmoid function in LeNet, Rectified Linear Unit
(ReLU) is selected as the activation function due to its non-saturating non-linearity and
less computational complexity. Data augmentation and dropout techniques are introduced
to avoid the problem of overfitting during the training phase. To summarize, the great
success of AlexNet demonstrates the outstanding performance of deep CNNs and opens a
new era for the whole computer vision community.

"http://yann.lecun.com/exdb/mnist/
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Figure 2.3: Architectures of (a) Inception-vl and (b) Inception-v3 modules [11].

VGGNet [10]. Simonyan and Zisserman arrange convolutional layers in a block-wise
manner and propose VGGNet which is the runner-up at ILSVRC 2014. Specifically,
VGGNet is composed of five convolutional blocks and three fully-connected layers, and
following each block, one max-pooling layer is attached to downsample feature maps. The
size of all convolutional filters is 3 x 3, and convolutional layers in each block have the
identical number of filters. Taking VGG-16 as an example, each layer in the five blocks
has 64, 128, 256, 512, and 512 convolutional filters, respectively. It is noteworthy that
compared to directly leveraging large filters, reducing the size of convolutional filters and
enlarging the number of layers can 1) ensure comparative receptive fields of deep layers
with fewer parameters and 2) enhance the non-linearity of the proposed model. Following
this work, designing CNNs block by block manner has been a mainstream trend.

Inception networks [12, 13, 11, 14]. The insight of Inception networks is to perceive
images through various receptive fields, and thus, filters with variant sizes are employed
to extract feature maps of the same level. Figure 2.3a illustrates the architecture of the
Inception module in GoogLeNet (a.k.a. Inception-vl). It can be seen that 1 x 1, 3 x 3,
and 5 x 5 convolutions and 3 x 3 max-pooling are conducted on inputs, respectively, and
extracted feature maps are concatenated as the final output. Following this design philoso-
phy, Inception-V3 module factorizes a n x n convolution into n x 1 and 1 X n convolutions
(cf. Figure 2.3b) which are more parametrically and computationally efficient. Conse-
quently, Inception networks go not only deeper but also wider, and in 2014, Inception-v1
won the championship of ILSVRC by reaching a top-5 error of 6.67%.

ResNet [15]. He et al. declare that learning direct mappings between images and latent
representations may result in the problem of degradation. To this end, the authors propose
to learn residual mappings with shortcut connections and successfully push the depth of
CNNs towards more than 1000 layers. Considering the computational consumption and
model performance, ResNet-50 and ResNet-152 are frequently applied to practical visual
missions. In ILSVRC 2015, the authors construct an ensemble of several ResNet variations
and won first place by reaching 3.57% top-5 error. Due to the limited page width, we only
present the visual illustration of a naive ResNet, i.e., ResNet-34, in Figure 2.4.
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Figure 2.5: Architectures of (a) ResNet and (b) ResNeXt blocks of equivalent complexities [16].
The configuration of each layer is denoted as the channel dimension of inputs, the
size of convolutional filters, and the channel dimension of outputs.

ResNeXt [16]. ResNeXt is a follow-up to ResNet and won the runner-up in ILSVRC
2016. Specifically, Xie et al. substitute parallel residual transformations (e.g., convolu-
tions) for the traditional stack of convolutional layers, and then aggregate transformed
features with element-wise addition. Thus, the entire procedure is so-called aggregated
residual transformations and is positioned at the same place as the conventional residual
learning. Figure 2.5 compares ResNet and ResNeXt blocks that have the same number of
parameters.

DenseNet [17]. DenseNet is proposed to enhance information flow by directly con-
necting each layer to all subsequent layers with equivalent feature-map sizes. To preserve
information learned by proceeding layers, concatenation is employed to combine features
from various layers. By reusing feature maps throughout the entire network, DenseNet can
learn compact internal representations for visual recognition tasks. Figure 2.6 illustrates
the architecture of three consecutive dense blocks.

Light-weight CNNs. Although the booming development of CNNs brings a sub-
stantial breakthrough in vision algorithms, training and deploying a deep CNN takes a
large amount of computational consumption, which restricts their applications on mobile
platforms. Therefore, instead of boosting the network classification capability, another
research direction is to preserve the network performance with light loads. As one of rep-
resentative light-weight CNNs, MobileNet [18] employs depthwise separable convolutions
where standard convolutions are factorized into depthwise and pointwise convolutions [19]
(cf. Figure 2.7). In its advanced version [20], inverted residual connections and linear bot-
tlenecks are proposed to further unleash the network potential. Moreover, ShuffleNet [21]
conducts pointwise convolutions on grouped features separately and rearranges channels
of feature maps for facilitating information exchange along the channel dimension. In
addition, SqueezeNet [22] improves the computational efficiency by reducing sizes of con-
volutional filters and reusing low-level features through bypass connections.
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Figure 2.6: The illustration of three consecutive dense blocks [17]. In each block, darker nodes
denote higher-level feature maps, while light nodes represent low-level features. Each
node is connected to all its subsequent nodes in the common block. Curved arrows
denote identity mappings.
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Figure 2.7: Illustration of (a) pointwise and (b) depthwise convolutions. Planes of variant colors
indicate different feature channels. Given feature maps with size of H x W x C
(representing the height, width, and channel), the size of each pointwise convolutional
filter is 1 x 1 x C, and that of a depthwise filter is K x K x 1. Notably, the number of
depthwise convolutional filters is required to set as C, and K is arbitrarily defined.

MnasNet [23]. MnasNet architectures are automatically learned on target datasets
through the mobile Neural Architecture Search (NAS) technique [23]. Compared to con-
ventional NAS techniques [24], mobile NAS aims to search architectures with low inference
latency on mobile platforms. Therefore, MnasNet has a low model latency and achieves
a good trade-off between accuracy and latency. To manipulate the model scale, a depth
multiplier is committed to shrinking channels of extracted features in each layer. In our
experiments, the depth multiplier is set to 1, and the best-performing MnasNet searched
on the ImageNet dataset [25] is chosen to perform multi-scene recognition in the wild.

2.2 Semantic Segmentation Networks

Semantic segmentation refers to identifying the category of every pixel in a given image
and producing a segmentation mask of the same size as the input image. Under the trend
of deep learning, extending CNNs to pixel-wise image interpretation is inevitable and has
achieved progress during the past few years. This section gives a glimpse of milestone
semantic segmentation networks that are often taken as baselines.

Fully Convolutional Network (FCN) [26]. Long et al. made the first attempt to
train semantic segmentation networks adapted from classification CNNs in an end-to-end
manner. Specifically, the authors convolutionalize all fully-connected layers by replacing
its units with convolutional filters covering equivalent regions. By doing so, FCN can
take as input images of arbitrary scales. To enable pixel-to-pixel predictions, high-level
feature maps are upsampled with deconvolutions, and low-level feature maps are reused
to improve spatial details in generated segmentation masks. Moreover, another benefit of
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Figure 2.8: Illustration of (a) FCN, (b) SegNet, and (c) U-Net. bars indicate convolutional
and pooling layers in the encoder, while bars represent deconvolutional and
convolutional layers in the decoder. Besides, bars denote upsampling and

convolutional layers in SegNet. Arrows represent skip connections.

convolutionalizing existing classification CNNs is that their weights pretrained on large-
scale image datasets can be employed to initialize corresponding semantic segmentation
networks. Figure 2.8a shows the architecture of FCN.

SegNet [27]. SegNet takes VGG-16 as the backbone for extracting high-level features,
and then decodes segmentation masks with a mirror architecture of the encoder. In the
decoder, max-pooling layers in between convolutional blocks are replaced with upsampling
operations. To preserve spatial details and alleviate the learning burden, pooling indices,
which record the position of maximum in each local region, are employed to allow non-
linear upsampling operations. Figure 2.8 illustrates the difference between SegNet and
other early heuristic architectures?.

U-Net [28]. U-Net is proposed for biomedical image segmentation, and then becomes
popular in semantic segmentation of high resolution natural and aerial images owing to
its outstanding capability of boundary delineation. As shown in Figure 2.8¢c, U-Net thor-
oughly reuses low-level features by concatenating them with upsampled high-level feature
maps. With this design, severe loss of fine-grained structural and textural features can be
refrained from to a great extent.

DeepLab networks [29, 30]. Spatial information loss caused by pooling layers is
always the trouble in semantic segmentation. To address this, DeepLab [29] proposes to
leverage atrous convolutions, which are implemented by dilating convolutional filters with
holes (i.e., zeros), and Conditional Random Field (CRF). Compared to standard convolu-
tions, atrous convolutions have larger receptive fields for capturing higher-level features. In
DeepLab, convolutions in deep layers are replaced with atrous convolutions, and relevant
pooling layers are discarded for remaining spatial resolutions of feature maps. Further-
more, inspired by PSPNet [31], its advanced version [30] employs atrous convolutions,
which have variant dilation rates, in a cascade and parallel fashion to extract multi-scale
feature representations for semantic segmentation.

2SegNet was proposed in 2015, but finally accepted by TPAMI in 2017.
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With the growing spatial resolutions, aerial imagery can provide richer spatial contextual
information of the earth surface and facilitate a more fine-grained view of aerial scenes.
Compared to remote sensing images with low spatial resolutions (e.g., hyper- or multi-
spectral images), aerial imagery is characterized by the facts that 1) single pixels have
few thematic meanings and 2) only Red, Green, Blue (RGB) bands are available leading
to very limited spectral cues. Therefore, instead of identifying each pixel individually as
interpreting hyper- or multi-spectral cubes, studies in aerial scene understanding deploy
more efforts in analyzing spatial patterns and geographic distributions of pixels. This is
because a single pixel with abundant spectral information is discernable according to the
dictionary of spectral signatures, while an individual pixel with only RGB values delivers
no valid semantics. Nonetheless, by grouping pixels in high-resolution aerial imagery in ac-
cordance with specific patterns, they can then have meaningful semantics and be assigned
thematic classes. For example, the semantic class of a single blue pixel is ambiguous, but
a rectangular area comprising purely blue pixels may indicate a swimming pool. Hence,
in contrast to hyper- or multi-spectral image interpretation where the category of each
pixel should be predicted, aerial scene understanding can be decomposed into two research
branches depending on different levels of human perception: image-level and pixel-level
understanding. To be more specific, given an aerial image, the former is dedicated to rec-
ognizing its scene category, so-called scene recognition, or identifying all objects present in
the given image, multi-label object classification, while the latter often refers to perceiving
the category of every pixel, semantic segmentation. Notably, the semantic segmentation
task is not conflict with our previous delineation that a single pixel is not recognizable, as
here we first sense pixels as a whole (e.g., a lake) and then assign the category label to each
of them (e.g., each pixel is classified as lake). Figure 1.1 presents an example aerial im-
age and its corresponding image-level scene/object labels or dense pixel-wise annotations
required for model training.

Regarding scene recognition, our literature review demonstrates that researchers tend
to study this problem in a laboratory circumstance and impose constraints that an aerial
image is supposed to be composed of or mainly occupied by only one scene. Thus, relevant
studies focus on inventing algorithms that assign only one scene label to each aerial image,
and to distinguish from researches in interpreting unconstrained aerial images, we term
conventional scene classification as single-scene recognition in the following depictions.
Another presetting in the laboratory is that annotations required for network learning
should be fully available, and this is especially vital for training semantic segmentation
networks, as they need to predict the category of every single pixel. Figure 1.1d is an
example of the pixel-wise annotation, and the size of the mask is the same as that of
Figure 1.1a. The value of each pixel indicates the semantic class of the corresponding
pixel in the original image. Compared to image-level labels, pixel-wise annotations convey
semantic information from the microscopic view but at a high cost.

To summarize, aerial scene understanding in a laboratory circumstance is dedicated
to inferring image-level scene/object labels of a well-cropped constrained aerial image

11
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Figure 3.1: Numbers of publications from 2013 till now in aerial scene recognition, multi-label
object classification, and semantic segmentation of aerial imagery, respectively. For
each task, e search on Web of Science! with the query command: TI=((remote sensing
or aerial or satellite or land use) and scene classification), TI=((remote sensing or
aerial or satellite or land use) and (multilabel* or multi-label*)), and TI=((remote
sensing or aerial or satellite or land use) and semantic segmentation).

or learning to identify each pixel from dense pixel-wise annotations. Although these
branches target understanding aerial scenes from variant perspectives, most of the ex-
isting researches is built on a common pipeline consisting of two stages: feature learning
and decision making. The former can be further decomposed into feature extraction and
feature fusion, aiming to extract diverse abstract representations of a given image and
aggregate them for the final prediction. The latter is achieved by a classifier that can
learn decision boundaries of different classes. In single-scene recognition and multi-label
object classification, the classifier has two common implementations: 1) a fully-connected
layer followed by an activation function, e.g., the softmax or sigmoid function, 2) a ma-
chine learning classifier, e.g., Support Vector Machine (SVM) and Random Forest (RF).
In semantic segmentation, a convolutional layer where the number of filters is the same
as classes is often taken as the classifier layer. Since most of the literature makes efforts
to develop novel feature learning architectures, we hereby sorted them based on their
contributions to either feature extraction or feature fusion.

The remaining of this chapter is organized as follows. Chapter 3.1 and 3.2 review recent
publications in single-scene recognition and multi-label object classification, respectively.
Chapter 3.3 introduces deep learning-based models that are designed for semantic seg-
mentation of aerial imagery and trained in a laboratory scenario.

3.1 Single-scene Recognition

Single-scene recognition refers to identifying the scene present in each image. As a fun-
damental bridge between aerial imagery and remote sensing applications, single-scene
recognition draws huge attention in the community, and massive literatures have been
published during the last decades (see blue bars in Figure 3.1). During the literature
review, we find that most of the existing studies pay attention to feature learning, and
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thus, we provide a detailed review of researches in the development of feature extraction
architectures and feature fusion techniques in Chapter 3.1.1 and 3.1.2, respectively.

3.1.1 Feature extraction architectures

The increment of image spatial resolutions brings not only more details about spatial
textures and structural patterns of an image but also great challenges to developing fea-
ture extraction architectures. In the early years, hand-crafted local and global descrip-
tors, to name a few, SIFT [2], Gabor [1]|, Histogram of Oriented Gradients (HOG) [32],
LBP [3], and color histogram [33], are frequently used to extract local structural pat-
terns and global spectral statistical information. To further construct a holistic represen-
tation of an aerial image, low-level visual attributes extracted by these descriptors are
then encoded into mid-level representations through approaches, such as Bag-of-Visual-
Words (BoVW) [34], Improved Fisher Kernel (IFK) [35], Latent Dirichlet Allocation
(LDA) [36], and probabilistic Latent Semantic Analysis (pLSA) [37]. Although early
researches [37, 38, 39, 40, 41, 42, 43, 44, 45, 46] have demonstrated their effectiveness,
handcrafted feature descriptors may still suffer from limitations, such as poor generaliza-
tion capability and high dependence of human expert knowledge.

In recent years, the emergence of deep learning has made made a breakthrough in single-
scene recognition, and many achievements [6, 47, 46] have been attained in this field.
By literature review, we observe that deep learning-based algorithms share a common
design that they take deep CNNs as the feature extraction backbone and propose task-
or data-specific adaptions to boost classification capabilities of invented networks. In [46],
the authors conducted an overall comparison of algorithms built on hand-crafted feature
engineering and deep neural networks, and quantitative results on various aerial scene
datasets demonstrate the superior performance of deep CNNs. The reason is that deep
CNNs are composed of hierarchically stacked convolutional layers and can be trained to
automatically extract discriminative semantic features via back-propagation. In [48], the
authors employ CAM [49] to visualize regions that a CNN pays more attention to when
recognizing aerial scenes (cf. Figure 3.2). Specifically, the authors take aerial images of
intersection and beach as examples and visualize CAM learned by VGG-16. Figure 3.2b
and 3.2e present regions that a shallow convolutional layer highlights, and Figure 3.2¢
and 3.2f illustrate that a deep layer identifies intersection and beach by focusing on the
road crossing and wave, respectively. As we can see, convolutional filters in shallow layers
perform as hand-crafted local descriptors and extract low-level visual attributes, such as
edges and blobs, while deep layers can learn discriminative high-level features (see red
regions in Figure 3.2c and 3.2f).

Therefore, to improve the classification performance of deep neural networks, many
efforts have been made to develop efficient feature extraction architectures. Early at-
tempts [50, 51, 52, 53, 54] treat CNNs pretrained on large-scale natural image datasets
(e.g., ImageNet [25]) as feature descriptors due to that spectral properties of aerial and
natural images are similar. To achieve so, researchers discard layers including and after the
last fully-connected layer of a CNN and treat generated high-dimensional feature vectors
as image representations. However, since imaging techniques of natural and aerial images
are different, ground targets present in these two types of images show diverse spatial
patterns. Consequently, directly applying a CNN developed for natural images to recog-

"https://www.webofscience.com/wos/woscc/advanced-search
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Figure 3.2: Visualization of attentional regions captured by VGG-16 in recognizing (a) intersec-
tion and (d) beach. (b) and (e¢) are CAMs generated by shallow convolutional layers
of VGG-16, while (c) and (f) are CAMs extracted by deep layers.

nizing aerial images imposes constraints on the potential of deep learning in this field. To
address this issue, recent studies aim to develop efficient feature extraction architectures
for extracting data- and task-specific features. Specifically, there are three main design
philosophies:

e Multi-scale feature extraction. Since the scale of one scene may vary substan-
tially depending on its circumstance and the flying height of airborne platforms,
it is fundamental to extract features at different scales by downsampling images
or applying convolutions with variant fields of receptive fields (cf. Figure 3.3 (a)).
In [55, 52, 56, 57], the authors propose to learn multi-scale features by downsampling
an image into variant scales before feeding them to CNNs. Instead of downsampling
original images, Tombe and Viriri [58] downsample feature maps with sliding pool-
ing windows and feed them into multi-grained Cascade forests for identifying scene
categories. In [59, 60], the authors downsample feature maps of different levels and
feed them to independent feature extraction branches. In addition to varying the
spatial dimension straightforwardly, convolutions of variant sizes can also extract
multi-scale features. In [61, 62], the authors extract multi-scale features by leverag-
ing convolutional filters of variant sizes.

e Multi-level feature extraction. As shown in Figure 3.2, although high-level
features are abstract and discriminative, they lose local spatial patterns which are
remained in low-level features. Therefore, the idea of jointly leveraging low- and
high-level features for single-scene classification arises naturally. A common way to
extract multi-level features is to reuse outputs of shallow layers in a deep neural
network (cf. Figure 3.3 (b)). Specifically, Lu et al. [63] exploit features extracted
by the last three convolutional blocks of VGG-16 and concatenate such multi-level
features and outputs of the penultimate fully-connected layer for the final prediction.
In [64], the authors take the first four residual blocks of ResNet50 to extract multi-
level features, while in [65], the last three blocks of ResNeXt50 is leveraged. Mei et
al. [66] experiment with AlexNet, VGG-19, and ResNet50, and build a dictionary of
multi-level features for scene classification. Similarly, Hu et al. [67] divide features
of variant levels into multiple feature sets for subsequent ensemble learning. In [68],
the authors employ the second, third, and fourth blocks of ResNet-50 and DenseNet-
121 to learn low-, middle-, and high-level feature maps, respectively. Sun et al. [69]
utilize CNNs and hand-crafted feature descriptors to extract multi-level features.
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Figure 3.3: Illustration of (a) multi-scale feature extraction, (b) multi-level feature extraction,
and (c) rotation-equivariant feature extraction. Notably, in (a), pooling/convolution
is conducted in sliding windows, and both images and feature maps can be taken as
input.

e rotation-equivariant feature extraction. In aerial imagery, scenes are taken
from a nadir and thus should be equivariant to rotations. With this intention,
Siamese feature extraction architectures are introduced to single-scene recognition
aiming to learn rotation-equivariant features. In [70, 71, 72, 73], the authors feed an
original aerial image and its rotated version to a Siamese architecture (cf. Figure 3.3
(c)) for jointly learning features from both non-rotated and rotated images. Nor-
mally, each branch is an individual CNN and share weights with the other branch.
In [72], the authors ensemble individual CNNs learned from images augmented by
variant rotations. Xie et al. [74] design a network to not only predict scene categories
but also rotated angles.

In addition to network design, other researches [75, 76, 77] aim to improve the efficiency
of feature extraction architectures from the perspective of training data. Guo et al. [75]
augment training samples by generating pseudo images with GANs. Liu and Ma [76]
propose to learn class-wise domain invariant features from different aerial image datasets
via adversarial training. Li et al. [77] divides target dataset into variant subsets for train-
ing networks to automatically correct uncertain labels. Liu et al. [78] propose to build
a hierarchical category tree of scene categories for network training. In [79], the authors
resort to object labels of aerial images, which present a microscopic view of scenes, and
Luo et al. [80] take label ambiguity into consideration by transforming a single label into
a neighbor-based distribution. Zhu et al. [81] introduce GANs to improving spatial res-
olutions of remote sensing images for single-scene classification. In [82, 83], the authors
inject adversarial training samples for improving the robustness of extracted features.
Besides, the authors in [84, 85] ensemble different deep neural networks for feature ex-
traction, and Cheng et al. [86] explicitly regularize the network training by imposing a
metric learning term on the penultimate fully-connected layer. In [87], the authors in-
vestigate representing samples in the non-Euclidean space and introduce the Lie group
manifold to scene classification. In addition, we note that an increasing number of re-
searches [88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101] study feature extraction in
the scenario of insufficient training samples and limited computational resources. Instead
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of heuristic network design, NAS technique is employed to search for optimal network
architectures automatically, and achievements [102, 103, 104, 105] have been obtained in
single-scene recognition.

3.1.2 Feature fusion techniques

As a bridge between feature extraction and the final inference, feature fusion refers to
rearranging and aggregating diverse features for yielding a more discriminative and holistic
feature representation. A naive way to fuse features is to uniform their spatial sizes through
pooling [65, 63] or reshaping [64] operations and then concatenate them forming high-
dimensional feature maps/vectors. However, such a straightforward fusion technique may
suffer from redundant features and dilute discriminative features. To this end, massive
efforts have been made to derive the importance of each feature map/vector in both
unsupervised and supervised manners that are introduced as follows:

e Unsupervised feature fusion. To measure the feature redundancy and retain only
principal features, it is natural to compute similarities/variances among features and
select prominent ones through dimensionality reduction methods, such as Principal
Component Analysis (PCA) and Discriminant Correlation Analysis (DCA). Specif-
ically, Li et al.[52] employ IFK and PCA to fuse outputs of convolutional blocks
and fully-connected layers, while in [51], the authors adopt DCA instead. Moreover,
He et al. [106] propose to calculate the covariance between each two feature maps
and project the covariance matrix into Euclidean space with the matrix logarithm
operation for inferring scene categories. Yuan et al. [54] regard the feature vector at
the image center as the representative feature and measure cosine similarity between
features located at other positions and the center one. Those with high relevance are
then retained for further fusion. Similarly, Dan and Li [107] excavate the relationship
between features of different positions with a matrix outer product.

e Supervised feature fusion. Under the booming trend of deep learning, enabling
networks to adaptively derive the importance of each feature map/vector is now
drawing increasing attention. Related studies mainly resort to spatial and channel
attention modules [108] and self-attention mechanism [109]. As to the former, a
convolutional layer with one filter is employed to learn spatial attention maps, and
channel attentions are captured by jointly utilizing global pooling and fully connected
layers. Regarding later, feature maps are transformed to key, query, and value for
inferring attention maps where each entity represents the relevance between feature
vectors located at two different positions. Figure 3.4 exhibits an visual illustration
of them. In [110, 111, 112, 113], the authors develop networks based on spatial and
channel attention modules. In [114] self-attention mechanism is introduced to au-
tomatically measuring relevances among features from different convolutional layers
for feature fusion. In [115], the authors enhance responses corresponding to objects
in feature maps via a context-aware spatial attention module. Fu et al. [116] en-
hance the feature rearrangement by recurrently feeding features into self-attention
modules. Qi et al. [117] design an adaptive object-centric pooling operation that
emphasizes regions, including objects for classification. Ma et al. [118] design a net-
work to learn the weightings of multi-level features and compute the weighted sum of
them as the holistic image representation. To fuse features in the decision level, Shen
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Figure 3.4: Ilustration of (a) channel and (b) spatial attention modules, and (c¢) self-attention
mechanism. In (a), global average/max pooling is first conducted, and output feature
vectors are fed to fully-connected layers for learning channel attentions. In (b), a
spatial attention mask is learned with 1 x 1 convolutions. To apply (c), feature maps
are reshaped along the spatial dimension, which yields a sequence of feature vectors,
before they are linearly transformed to query, key, and value.

et al. [119] train multiple classification heads on features of variant levels and fuse
them for the final decision. Sun et al. [120] propose to aggregate features of variant
levels through a gated bidirectional connection which makes it possible for networks
to learn to discard redundant features automatically. Besides, Wang et al. [121] em-
ploy Long Short-Term Memory (LSTM) to recurrently learn to localize attentional
regions of an aerial image for recognizing its category, and Tong et al. [122] employ
a spatial transformer network to adaptively extract discriminative regions and dis-
card redundant features. In [64], the authors propose to preserve spatial textural
information contained in features of variant levels with capsule networks, and the
authors in [123] aggregate multi-level features into capsule representations for scene
categorization.

As a consequence, the fused features are supposed to be more discriminative and concise.
Afterwards, to derive scene categories from fused features, a fully-connected layer followed
by a softmax function is most commonly used and allows training networks in an end-
to-end manner [110, 122, 111, 113]. Besides, several works make use of machine learning
classifiers, such as SVM [52, 69] and RF [58], to infer scene labels. By learning holistic
feature representations of aerial images, single-scene classification algorithms can make
judicious predictions compared to conventional methods that rely on hand-crafted feature
engineering.
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3 Aerial Scene Understanding in the Lab

3.2 Multi-label Object Classification

Multi-label object classification provides an object-level understanding of aerial scenes by
identifying categories of objects present in a given scene, and this research topic draws
increasing attention in the remote sensing community during the last decades (see red
bars in Figure 3.1). To predict multiple object labels, an intuitive scheme is to transform
the problem into multiple binary classification tasks, where a binary classifier is trained
independently for each label. Algorithms based on this scheme are also known as bi-
nary relevance algorithms [124, 125]. However, these algorithms suffer from two serve
limitations: 1) classifiers with respect to rare object categories are prone to have poor
performance due to the deficiency of training samples, and 2) label correlations are not
learned and exploited in categorizing coexisting objects. To tackle these limitations, recent
studies deploy more efforts to encode label correlations for multi-label object classification,
and thus sorted as label relation mining approaches. In this section, we introduce these
two technique branches in Chapter 3.2.1 and Chapter 3.2.2, respectively.

3.2.1 binary relevance algorithms

Binary relevance algorithms decompose the multi-label classification task into multiple
binary classifications. A common design philosophy is that a feature learning module
is first employed to extract discriminative image representations which are then fed to
multiple independent classifiers with respect to candidate object categories. Figure 3.5
presents a visual illustration of a binary relevance algorithm. Notably, we also consider
deep neural networks end with a fully connected layer and a sigmoid activation function
as binary relevance algorithms. This is attributed to the property of the sigmoid function
where outputs are calculated independently with the following equation:

yp = o(WiX), (3.1)

where yy, is the prediction of class k, W}, denotes weights of the k-th unit, and X repre-
sents feature presentations of the image. Eq. 3.1 suggests that each output is computed
independently, and underlying correlations among are thus cut off. Compared to single-
scene recognition, the main difference lies only in the last activation layer, which makes
it feasible to transfer most of the deep neural networks reviewed in Chapter 3.1 to multi-
label object classification by simply replacing the last softmax function with the sigmoid
function.

In [125], the authors propose a 3-layer autoencoder to reconstruct input images and feed
the learned latent features to a multilayer perceptron activated by a sigmoid function for
predicting multiple labels. Following this work, Zeggada et al. [126] introduce deep con-
volutional neural networks to identifying multiple objects in UAV images and substitute
the last softmax layer with a radial basis function neural network (RBFNN) for the final
prediction. In RBFNN, the Otsu thresholding algorithm [127] is leveraged to estimate the
threshold of deciding whether predicted results indicate the presence or absence. In [124],
the authors employ a deep neural network to learn image representations and infer each
object label independently with XGBoost [128]. Zegeye and Demir [129] introduce active
learning to train confident classifiers by punishing predictions falling inside margins of a
classifier. Besides, Bashmal et al. [130] introduce Transformer [109] to multi-label object
classification and propose a two-branch architecture for jointly recognizing objects in an
image and its augmented version (e.g., being flipped, rotated, and randomly cropped).
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Figure 3.5: Illustration of (a) binary relevance and (b) label relation mining approaches.

In [131], the authors note that aerial images collected from adjacent locations share sim-
ilar or complementary spatial patterns and are expected to be assigned with comparable
labels. Hence, they introduce CRF to encode spatial correlations for refining multi-label
predictions. Similarly, Chaudhuri et al. [132] construct a neighborhood graph where each
node represents an image, and the weight of each edge is determined by the similarity be-
tween corresponding images. Following this work, Dai et al. [133] includes not only local
descriptors but also histogram-based spectral descriptors for jointly encoding spatial and
spectral characteristics of input images. Zhu et al. [134] propose to jointly exploit scene
and object labels for enabling networks to learn discriminative feature representations.
Specifically, the proposed network consists of two branches, where one learns to predict
multiple object labels, while the other one encourages features of images belonging to the
same scene to be closer in the same embedding space. In [135], the author designs a neural
network consisting of two branches: an image branch and a label branch. The former is
responsible for extracting high-level features and ranking predictions through ResNet50,
while the latter learns to match image features and their corresponding ground-truth la-
bels. Furthermore, the authors evaluate the network performance with EfficientNet-B0
as the backbone on the UC-Merced multi-label dataset in [136]. Sumbul et al. [137] ex-
ploit a multi-branch architecture to extract semantic information of images with variant
spatial resolutions. Afterwards, these features are fed to a bidirectional LSTM for en-
coding their spatial relations and inferring the existence of each object. Shendryk et
al. [138] investigate the influence of different sizes of input images and mini-batches in
training a VGG-like model. Instead of directly learning multiple image-level labels, Shao
et al. [139] trains a semantic segmentation network to predict pixel-level labels and then
induce image-level multiple object labels from segmentation maps. As an interesting trial,
Topgu et al. [140] explore the feasibility of capsule networks and validate their performance
on the UC-Merced multi-label dataset.

19



3 Aerial Scene Understanding in the Lab

(b)

Figure 3.6: Example high resolution aerial images delineating (a) industrial, (b) residential, and
(¢c) parking lot but sharing common object labels, car and pavement.

3.2.2 Label relation mining algorithms

The mutual dependence among coexisting objects is inherent in multi-label aerial images.
Figure 3.6 shows an example that images belonging to different scenes but have several
common object labels. Therefore, mining underlying label correlations is crucial for multi-
label object classification, which is also in line with human cognition of the world. For
instance, a car’s presence highly indicates the co-existence of pavements, and the predicted
occurrence of a ship often suggests that there is water around. Label relation mining
algorithms [141, 142, 143, 144] can be summarized with the following equation:

Yk :./_"(Xk,)(_‘k), (32)

where X is the feature extracted for k-th object label, and AX_; denotes a subset of
features with respect to other labels. F indicates label relation mining functions that can
be implemented with LSTM [141], relation networks [142], and graph neural networks [143,
144]. Compared to Eq 3.2, features of non-target labels are taken as input for encoding
label relevances.

More specifically, Hua et al. [141] boil the multi-label object classification task down
into a structured output problem, where the prediction of each label is dependent on the
others. To achieve so, the authors extract class-wise feature representations with a CNN
and make use of a bidirectional LSTM to predict the presence of each object at corre-
sponding time steps. Following this work, Ji et al. [145] conduct spatial normalization on
class-wise feature maps and predict all classes at each time step. The final result is then
generated by max-pooling predictions at all time steps. Diao et al. [146] propose to re-
place convolutions in CNNs with deformable convolutions for learning geometry-invariant
label-related features and then encode dependencies among extracted features using a
Gated Graph Neural Network (GGNN). Huang et al. [147] extract label correlation cues
for multi-label object classification by computing label co-occurrence matrices from target
datasets. However, the applicability of this method is dependent on the prior knowledge of
label statistics which is often not available in the real-world scenario. In [144], the authors
aim to learn an embedding space where images with similar contents are clustered, and
dissimilar images are far away from each other. To exploit image similarities, the authors
construct a graph based on the number of labels shared by each image pair and design
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a scalable neighbor discriminative loss for training networks. Zhang et al. [148] formu-
late the multi-label object classification task as a recommendation problem and exploit
Non-negative Matrix Tri-Factorization (NMTF) to recover image-label, image-feature, and
feature-label matrices. In [149], the authors make use of low-rank representation for con-
structing feature- and label-based graphs and classify unlabeled images by measuring their
semantic similarities with labeled images. Besides, Hua et al. [150] observe that multiple
object labels are difficult to create, and noise is inevitable. Therefore, the authors leverage
label correlations extracted from pre-trained word embeddings to correct predictions.

Instead of directly predicting multiple labels from the whole image, researches [151, 143,
152, 153] regard an image as an integration of multiple sub-regions which include different
objects. Specifically, Chen et al. [151] treat an image as a bag of several instances and thus
segment images at different levels of details resulting in multiple instances. Followingly,
a hierarchical semantic structure is developed for inferring labels of each segment, which
are eventually aggregated as the final prediction. In [143], the authors segment an image
into several disjoint regions with parametric kernel graph cuts [154] and extract their
features with local descriptors. Afterwards, features are fed to a Graph Convolutional
Network (GCN), where each entity of an adjacency matrix is computed by the distance and
orientation angle between two region centroids, for inferring multiple labels. Li et al. [152]
partition feature maps into superpixels and then build graphs on them for performing
multi-label object classification. In [153], the authors utilize a regular grid to partition
each image into several patches and decompose the multi-label object classification task
into the problem of categorizing the single label of each instance. Segmented Instance
Bag (SIB) and Layered Instance Bag (LIB) are used to extract features of each instance,
and the Mahalanobis distance-based K-Medoids approach is used to predict labels. By
encoding and exploiting label correlations, algorithms are expected to make more prudent
decisions of co-occurred object labels.

3.3 Semantic Segmentation of Aerial Imagery

The mainstream pipeline of semantic segmentation networks is identical to classification
networks but emphasizes more on reusing low-level features in encoder/decoder subnet-
works and pixel-wise feature aggregation. Another difference is that the final classifier
in decoder subnetworks is often implemented as a convolutional layer where the size and
number of filters are 1 x 1 and the number classes, respectively. Hence, instead of flat-
tening and global pooling operations that aggregate features of all pixels, concatenation
and element-wise addition are more often employed to merge features in a pixel-to-pixel
manner.

Baseline segmentation networks are delineated in Chapter 2.2, and Figure 2.8 il-
lustrates most frequent network architectures. Following those milestones, most ef-
forts [155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165] in semantic segmentation
of aerial imagery are deployed to enhance the feature representation capability through
compact inter-layer information flow. Specifically, Ding et al. [155] propose to inject se-
mantic features extracted by deep layers into low-level features with a channel attention
mechanism (cf. Figure 3.4a), so that fine-grained spatial details as well as discriminative
semantic information can be jointly used to predict segmentation masks. Li et al. [156]
propose lightweight spatial and channel attention modules to adaptively refine features
along spatial and channel dimensions. In [160], the authors aim to design a parametric-
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efficient semantic segmentation network by reducing the number of parameters as well
as resizing and fusing multi-scale features in decoder subnetworks. Marcos et al. [166]
propose rotation-equivariant convolutional filters to ensure the extracted features are en-
coded with high rotation equivariance. In [167], the authors propose to learn multi-scale
attentions and fuse multi-level features via self-attention mechanism (see Figure 3.4c) for
boosting the network performance in detecting size-varied objects.

Instead of designing elegant network architectures, another research branch is to learn
networks in a multitasking manner. In [168], the authors propose a multitask learning
strategy where networks are trained to predict not only segmentation masks but also
inter-class boundaries. By doing so, networks are expected to learn more discriminative
semantic features. Similarly, the authors in [169] employ morphological operations to de-
tect edges and take them as supervisory signals in training networks to learn accurate
edges. Diakogiannis et al. [165] propose a multitasking Res-UNet-a, where residual blocks
are stacked and connected under the framework of UNet, to infer semantic classes and
boundaries as well as reconstruct distance map (distances between pixels and their near-
est boundaries) and original images. Besides, the authors propose a Tanimoto loss which is
built on the Dice loss but can accelerate the convergence. Li et al. [170] propose networks
to learn domain- and rotation-invariant features by imposing three weakly-supervised con-
straints: weakly-supervised transfer invariant constraint, weakly-supervised pseudo-label
constraint, and weakly-supervised rotation consistency constraint. Li et al. [171] intro-
duce self-supervised representation learning to semantic segmentation and design three
pretext tasks, i.e., image inpainting, transform prediction, and contrastive learning, for
pretraining backbone networks. Experimental results show that networks built on pre-
trained backbone networks can achieve satisfactory performance with limited pixel-wise
annotations.

3.4 Data and Evaluation Metrics

Large amounts of available training data play a key role in learning deep neural networks
for aerial scene understanding. Thanks to the great development of remote sensing tech-
niques, an increasing number of aerial imagery is now available for producing datasets.
Table 3.1 presents an overview of datasets published for aerial scene understanding in the
laboratory circumstance. In this chapter, we introduce datasets and evaluation metrics in
Chapter 3.4.1 and 3.4.2, respectively.

3.4.1 Datasets

The number of aerial image datasets for single-scene recognition has been growing since the
UC-Merced dataset [34] is published. To yield single-scene aerial image datasets, producers
first crop images from an extremely large-scale image (such as the United States Geological
Survey (USGS) National Map, Google Earth imagery, Bing Map and Tianditu imagery),

’https://map.tianditu.gov.cn/
3https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclatur
eguidelines
“http://www.classic.grss—ieee.org/community/technical-committees/data-fusion/2015-ieece-g
rss-data-fusion-contest/
Shttps://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-1label-vaihingen/
Shttps://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-1label-potsdam/
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3.4 Data and Evaluation Metrics

Table 3.1: An overview of existing public single-scene aerial image datasets.

Dataset # images resolution # scenes size source Year
UC-Merced [34] 2,100 0.3 m/px 21 256 x 256 px ~ USGS 2010
WHU-RS19 [172] 1,005 >0.5 m/pix 19 600 x 600 px GE 2012
WHU20 [45] 5,000 0.3-7.4 m/px 20 600 x 600 px GE 2015
RSSCN7 [173] 2,800 0.2-1.4 m/px 7 400 x 400 px GE 2015
SIRI-WHU [174] 2,400 2 m/px 12 200 x 200 px GE 2016
RSC11 [175] 1,232 ~0.2 m/px 11 512 x 200 px GE 2017
AID [46] 10,000 0.5-8 m/px 30 600 x 600 px GE 2017
NWPU-RESISC45 [176] 31,500 0.2-30 m/px 45 256 x 256 px GE 2017
RSI-CB256 [177] 24,000 0.3-3 m/px 35 256 x 256 px GE/BM 2017
RSI-CB128 [177] 36,000 0.3-3 m/px 45 128 x 128 px GE/BM 2017
RSD46-WHU [178, 179] 117,000 0.5-2 m/px 46 256 x 256 px GE/T 2017
AID++ [180] 400,000 0.5-8 m/px 46 600 x 600 px GE 2018
PatternNet [181] 30,400 0.06-4.7 m/px 38 256 x 256 px GE 2018
OPTIMAL-31 [182] 1,860 - 31 256 x 256 px GE 2019
CLRS [183] 15,000 0.26-8.9 m/px 25 256 x 256 px  GE/BM/T 2020
MLRSN [184] 109,161 0.1-10 m/px 46 256 x 256 px GE 2020
So2Sat LCZ42 [185] 400,673 10 m/px 17 32 x 32 px S1/S2 2020
Million-AID [47] >1,000,000  0.5-153 m/px 51 600 x 600 px GE 2020

GE, BM, T, and S1/S2 denote Google Earth, Bing Map, Tianditu?, Sentinel-1, and Sentinel-2 imagery.

px indicates pixel(s).

Table 3.2: An overview of existing public multi-label aerial image datasets.

Dataset # images resolution # scenes size Label Year
UCM-mul [132] 2,100 0.3 m/px 17 256 x 256 px M 2018
DFC15-mul [141] 3,342 0.5 m/px 8 600 x 600 px DFC15 2019
BigEarthNet[186] 590,326 10-60 m/px 43 <120 x 120 px CLC 2019
AID-mul [142] 3,000 0.5-8 m/pix 17 600 x 600 px M 2020
MLRSNet [184] 109,161 0.1-10 m/px 46 256 x 256 px M 2020

CLC is the abbreviation of Coordination of Information on the Environment (CORINE) Land Cover

database®.

DFC15 indicates the GRSS_DFC_2015%dataset published for 2015 IEEE GRSS Data Fusion Contest.
M denotes annotations are manually yield through visual inspection.

and then manually inspect their contents or resort to crowdsourced data for annotation. A
brief summary of existing public single-scene aerial image datasets is presented in Table 3.1.
Figure 3.7 shows several examples from variant sources.

Compared to single-scene aerial image datasets, multi-label aerial image datasets are
more arduous to yield. This is because annotators are required to visually inspect every
one of the objects present in each aerial image for determining its multiple object labels.
Although efforts [180, 47] have been made to alleviate such annotation burden by resorting
to crowdsourcing platforms, their attempts demonstrate that human labor is still neces-
sary due to the incorrectness and incompleteness of crowdsourced data. Thus, another
solution arises that is reproducing from existing pixel-wise annotated databases, such as

23



3 Aerial Scene Understanding in the Lab

AN TV

HANEAN

Google Earth USGS

Bing Map Tianditu

Figure 3.7: Example aerial images from variant datasets (from left to right: AID, UCM, RSI-
CB256, and RSD46-WHU) with respect to different scenes (From top to bottom:

airport, harbor, parking lot, river, residential, and storage tanks). Data source plat-
forms are denoted in the bottom row.
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Table 3.3: An overview of existing high resolution image semantic segmentation datasets.

Dataset # images resolution # classes size Year
ISPRS Vaihingen® 33 9 em/px 6 2,494 x 2,064 px 2013
ISPRS Potsdam® 38 5 cm/px 6 6,000 x 6,000 px 2013
Massachusetts [187] 1,322 100 cm/px 3 1,500 x 1,500 px 2013
DFC15 7 5 cm/px 8 10,000 x 10,000 px 2015
Zurich Summer [188] 20 62 cm/px 8 1,000 x 1,000 px 2015
Inria Aerial [189] 360 30 cm/px 2 5,000 x 5,000 px 2017
DLRSD [190] 2,100 30 cm/px 17 256 x 256 px 2018
UAVid [191] 300 - 8 3,968 x 2,160 px 2020
Hi-UCD [192] 1,293 10 ¢cm/px 9 1,024 x 1,024 px 2020
LandCover.ai [193] 41 25/50 cm/px 4 6,307 x 8,563 px 2021

thematic map [186] and semantic segmentation datasets [141]. Table 3.2 summarizes pub-
licly available multi-label aerial image datasets, and Figure 3.8 presents examples from
DFC15-mul, BigEarthNet, and MLRSNet. UCM-mul and AID-mul are reproduced from
UCM and AID, respectively, and their example images can be referred to in Figure 3.7.

In Table 3.3, we list several commonly-used and newly-published aerial image semantic
segmentation datasets. As these datasets are produced in the laboratory circumstance, all
pixels belonging to predefined classes are exhaustively annotated which is labor-consuming.
Thus, I would like to thank all data producers for their great contributions to the com-
munity here. We can see that these images tend to have large sizes, and thus, cropping
large-scale images into small patches with a sliding window is often taken as the first step
of network training.

3.4.2 Evaluation metrics

To evaluate the network performance in single-scene recognition, Overall Accuracy (OA),
Average Accuracy (AA), and Kappa coefficient are computed on test data with the fol-
lowing equations:

TP
A= —
O N
L
1 TP,
AA = 7 > A (3.3)

N-TP-YE (TP.+ FN,) - (TP.+ FP,)
N2 -t (TP.+ FN,)-(TP.+ FP,)

Kappa =

where TP represents the number of true positives counted over all test samples, of which
the number is denoted as N. TP., FP,., and FN, indicate the number of true positives,
false negatives, and false negatives with respect to the c-th class, and N, is the number
of samples belonging to the c-th class. L is the number of scene classes. Among them,
OA and Kappa assess a model from the perspective of its overall capacity, while AA is
more sensitive to the class-wise performance. For instance, a model that performs poorly
on rare classes can have a high OA but a low AA. Besides, OA can be equal to AA when
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(d)

Figure 3.8: Example aerial images with multiple labels from DFC15-mul ((a) and (d)), BigEarth-
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Net ((b) and (c)), and MLRSNet ((e) and (f)) datasets. Their labels: (a) Impervious,
vegetation, building, and car. (b) permanently irrigated land, sclerophyllous vege-
tation, beaches, dunes, sands, estuaries, sea and ocean. (c) mountain, snow, and
snowberg. (d) Water, clutter, and boat. (&) discontinuous urban fabric, non-irrigated
arable land, land principally occupied by agriculture, and broad-leaved forest (f) build-
ings, crosswalk, grass, trees, cars, pavement, road, and intersection.



3.4 Data and Evaluation Metrics

the number of samples in each class is identical. Thus, it is more important to jointly
compute AA and OA for a comprehensive evaluation on imbalanced datasets.

In contrast to single-scene recognition networks, multi-label object classification models
are designed to make multiple predictions on each image. Hence, to evaluate such models,
correctly inferring all labels of an image can not be simply counted as one correct prediction
but should be counted multiple times depending on evaluation principles. To be more
specific, there are three types of evaluation metrics for multi-label object classification
networks:

o Class-based Metrics: Mean class-based precision (mCP), recall (mCR), F; (mCFy)
score, and per-class average precision (AP) are calculated for measuring the per-
formance of networks from the perspective of class. Specifically, mCP, mCR, and
mCFq score are computed as:

1 TP,
mp=-%"_ ¢
L 2~ TP, +FP,
1 TP
— -yt 3.4
mCR L;TPC+FNC’ (34)
TP,

mCF; = — ,
T 21 TP, + L(FP. + FN,)

where TP., FN., and FP, represent numbers of true positives, false negatives, and
false positives with respect to the c-th class, respectively. As to the per-class AP,
we first rank all examples according to the predicted probability of the c-th class in
each of them. Then we calculate the corresponding AP with the following formula:

N
1 TP,k
AP=—% 1ak .
N, & TP, Gk + FP,Gk ' (3:5)

where N, denotes the number of examples including the c-th class, and TP .@Qk and
FP.QFk represent numbers of true and false positives in top-k examples, respectively.
Notably, TP.@Qk and FP.Qk are equivalent to TP, and FP., when k equals to N.
rel@k denotes the relevance between the k-th example and the c-th class, and it
is set to 0/1 when the c-th class is included/excluded. Besides, the mean average
precision (mAP) can be computed by averaging APs for all categories.

e Ezample-based Metrics: Mean example-based precision (mEP), recall (mER), and
F1 (mEF;) score are computed to validate networks from the perspective of example
with the following equations:

N
mEP = Z s FPk

N
1 TP,
FR= -5 —— % _ .
mER NZTPk+FNk’ (3.6)

N
1
EF, = —
mEF; N;TPk-F FPk+FNk)
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where TPy, FPy, and FN; denote numbers of true positives, false positives, and false
negatives in the k-th example.

Overall Metrics: Overall precision (OP), recall (OR), and F; (OF;) score can be
used to measure the performance of models from a more holistic perspective, and
they are calculated as:

TP
OP = TP +FP’
TP
Of =T PN (37)
TP

OF,; = ,
"7 TP 4+ L(FP + FN)

where TP, FP, and FN are counted based on predictions of all scenes and examples.

As to semantic segmentation networks, frequently used evaluation metrics are per-class

CF1, mCFy, OA, and AA. Besides, Intersection over Union (IoU) is also computed with
respect to each class for measuring overlapping areas between positive predictions and
ground truths. The equation is as follows
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4 Aerial Scene Understanding in the
Wild

In the field of aerial scene understanding, the mainstream research direction is to pro-
pose and validate algorithms under the laboratory prerequisites, where aerial images are
well-cropped and fully annotated. To be more specific, in conventional scene recognition,
aerial images are supposed to satisfy two requirements that target scenes are center-aligned
and take the majority of respective images. Such constraints often result in images with
monotonous scene-wise patterns and small scales. As to semantic segmentation of aerial
imagery, dense pixel-level annotations are needed to convey sufficient supervisory signals
for learning deep semantic segmentation networks. Since manually yielding pixel-level
annotations is extremely arduous and expensive, there are limited datasets for semantic
segmentation of aerial imagery, which restricts the applicability of existing studies in real-
life applications. As a consequence, although many achievements have been attained in
aerial scene understanding during recent years, the deployment of deep learning models
in the wild is still a severe predicament. In order to take a further step towards the real-
world scenario, we break these constraints in this dissertation by answering two questions:
1) What if images are collected freely and have large coverage? and 2) Can we deploy
deep neural networks in practical applications at a low cost? As to the former, we pro-
pose a new task, namely multi-scene recognition, where images are collected without any
constraints and algorithms should recognize all present scenes instead of only the domi-
nant one. Regarding the latter, we focus on semantic segmentation networks, which are
data-hungry and often suffer from insufficient annotations for novel tasks, and propose an
annotation-friendly pipeline. The remainder of this chapter is organized as follows. Chap-
ter 4.1 highlights the difference between single- and multi-scene recognition and briefly
introduces current researches. Chapter 4.2 recalls the progress of semantic segmentation
with incomplete labels, and eventually, a comprehensive view of existing datasets for these
tasks is presented in Chapter 4.3.

4.1 Multi-scene Recognition

4.1.1 From Single- to Multi-scene Recognition

In Chapter 3.1, we have briefly introduced researches in the conventional scene classifica-
tion task, where each aerial image is assigned only one scene label. During the literature
review, it is not difficult to observe that most existing works share a common assumption
that an aerial image contains only one scene, and thus evaluate the network performance
on well-cropped single-scene aerial images. To produce single-scene image datasets, re-
searchers usually resort to crowdsourcing platforms, e.g., OpenStreetMap (OSM), as they
provide not only semantic attributes (e.g., category and function) but also geographical
properties (e.g., geographic coordinate and geometrical shape) of ground targets. Fig 4.1
presents an example of querying features of a building on OSM. By simply setting coordi-
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2 OpenStreetMap
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L

building yes

Figure 4.1: Illustration of querying building features on the OSM platform.

nates of the ground target, we can obtain the category, location, and shape of the queried
building with a simple click. In [47], the authors delineate the process of generating single-
scene image datasets. Specifically, thematic OSM layers with respect to scenes of interest
are first extracted from the whole OSM database through semantic attribute filtering.
By parsing the corresponding thematic layer, locations and shapes of entities belonging
to each scene can be accessed and employed to determine where and what scale images
should be captured. Once sufficient images are collected, their labels can be assigned
automatically based on their semantic attributes. Figure 3.7 shows several examples of
produced images and labels, and we can observe that in each aerial image, the target
scene is located in the center and occupies most of the areas. However, in the real-world
scenario, it is more often that there exist multiple scenes and distributed eccentrically in
an aerial image. Hence, in this dissertation, we aim to study a more practical case, multi-
scene recognition, aiming to identify all present scenes in unconstrained aerial images. In
comparison with conventional scene recognition, this new task is different in terms of the
following perspectives:

e (Objective. In conventional aerial scene recognition, existing studies focus on identi-
fying dominant scenes but neglect clutter scenes that are close to image borders or
have negligible areas (see woodlands and residential at the fourth row of Figure 3.7).
That is to say, even multiple scenes co-exist in one image, algorithms are designed
to recognize only the dominant one. In contrast, the multi-scene recognition task
aims to draw a comprehensive picture of present scenes and identify all but not one
of them. Compared to single-scene recognition, this task is more challenging and
able to exhaust the performance of deep neural networks in interpreting images of
complex contents and sensing inconspicuous tiny targets.

e Image acquisition. As to single-scene recognition, all aerial images are well-cropped
and have small coverage for ensuring the predominance of target scenes. In each
aerial image, most of the objects are equipped with similar properties and correlated
in a homogeneous pattern with respect to each scene. Besides, since target scenes are
centered-aligned in major training samples, networks might overemphasize features
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of objects in the image center. Nonetheless, in multi-scene recognition, images are
captured in an unrestrained manner and allowed to cover large areas, which simulates
the scenario in the wild that constrained images are not always available. Compared
to single-scene images, unconstrained aerial images are prone to contain multiple
co-occurring scenes, which are likely to be incomplete and trivial. Thus, multi-scene
recognition is a more challenging and worthwhile research interest.

o Label encoding. In single-scene recognition, labels are encoded into one-hot vectors,
representing probability distributions over all categories. In each one-hot vector,
only the element corresponding to the target scene is 1 and the others are 0, which
encourages algorithms to learn to pick the correct category from candidates with
100% confidence. As a consequence, the softmax function is often selected as the
last activation function, as the sum of its outputs is 1, and each element indicates
the probability of an image belonging to the corresponding scene. However, in
multi-scene recognition, labels are multi-hot vectors, where each digit individually
denotes the existence/presence of the corresponding scene. In this case, the sum of
all elements is unforeseeable in advance, and the meaning of label vectors is different
from that in single-scene recognition. In a multi-hot label vector, the value of each
element suggests the probability distribution over the presence and absence but
not all classes. As a consequence, instead of the softmax function, the sigmoid
function is more frequently used as the last activation layer in deep networks.

e Label semantics. The encoding of multiple labels in multi-scene recognition and
multi-label object classification is identical, but their semantics are far different.
The concept of scene is of higher-level and more abstract in comparison with object.
Besides, a scene is an association of multiple objects, and variant rearrangements of
common objects can result in different scenes. Hence, images assigned common mul-
tiple object labels can have variant scene labels, which leads to the serious difficulty
of thoroughly interpreting unconstrained aerial images.

4.1.2 Deep Learning for Multi-scene Recognition

As the first attempt [194], the authors propose a prototype-based memory network for
constructing the prototype representation of each aerial scene and inferring multiple scene
labels by measuring similarities between these prototypes and given multi-scene images.
The insight of this work is that scenes appear similar structural, textural, and spectral
patterns in high resolution aerial images even they are acquired by variant data platforms
(see Figure 3.7). Therefore, an intuitive idea arises that deep neural networks can learn
discriminative scene prototypes on single-scene aerial image datasets, which are abundant
and readily accessed, in advance of inferring multiple co-occurring scenes in unconstrained
aerial images. And this is expected to mitigate the problem of insufficient training data
for multi-scene recognition. More details of this work can be referred to in Chapter 5.4.
In [195], the authors treat multi-scene recognition as the multi-label problem and evaluate
multi-label object classification networks on a benchmark dataset. Besides, single-scene
classification networks are transferred to this task by substituting the sigmoid function
for the softmax function, and their performance is validated as well. However, till now,
multi-scene recognition remains underexplored.
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Figure 4.2: Aerial images taken over urban residential areas in (a) Germany, (b) China, and (c)
the US and are provided by Google Earth. Albeit identical functions, they share
variant architectures, visual appearances, and layouts.

4.2 Semantic Segmentation of Aerial Imagery with Sparse
Scribbled Annotations

4.2.1 From Dense to Sparse Pixel-wise Annotations

Semantic segmentation of aerial imagery refers to identifying the category of every pixel in
high resolution aerial images and offers a pixel-level understanding of aerial images. With
the great advancement of aerial photography techniques and deep learning-based method-
ologies, many achievements have been obtained in this field, and we have presented a brief
review in Chapter 3.3. Albeit successful, these great successes are highly dependent on
massive dense pixel-level annotations where all pixels are assigned their category through
enormous manual visual inspections. Therefore, such annotations are expensive and at a
substantial cost of time and human labor, which restricts the progress and deployment of
existing researches in tasks suffering from data scarcity. Moreover, since deep learning-
based approaches are data-driven and prone to overfit distributions of training data, the
performance of trained models might show limited performance in interpreting test images
that are collected from regions of variant cultural and natural environments. Figure 4.2
presents aerial images taken over Germany, China, and the United States (the US) with
respect to the same scene, residential. It can be seen that construction styles and urban
layouts are different, and it is not surprising that deep neural networks learned on one of
the cultural zones may fail to interpret the others. As a consequence, in real-world appli-
cations, gathering aerial images of study areas and manually labeling them in a pixel-wise
manner is a rule of thumb for putting deep learning-based models into practice. However,
this pipeline suffers from the heavy annotation burden which hinders agile aerial scene
understanding. To address this issue, we study a more annotation-friendly framework
for semantic segmentation of aerial imagery based on incomplete and sparsely distributed
labels. More specifically, instead of pixel-wise labeling aerial images, human annotators
are required to label a few pixels by simply painting points, scribbles, or polygons within
selected objects and assigning all pixels along or inside drawings uniform classes. Exam-
ples of sparse point-level, scribble(line)-level, and polygon-level annotations are shown in
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image polygon scribble

Figure 4.3: Illustration of sparse point-, scribble-, and polygon-level annotations.

Fig 4.3. Compared to dense pixel-wise labels, scribbled annotations are characterized by
the following features:

o Cheap acquisition. Point-level annotations are yielded by drawing a dot per selected
object, which mimics how humans refer to objects by pointing. Squiggles are easy
to paint even for a child, and annotators only need to ensure that scribbled lines are
painted inside objects so that pixels along one line can be assigned the same class
label. Polygon-level annotations can be regarded as a special case of scribble-level
annotations, where a line ends up at its starting point, and pixels located within one
polygon are categorized into the same semantic class. In contrast to dense pixel-
level labels, scribbled annotations are not required to fit complex object geometrical
shapes, which significantly reduces the cost of time and human labor.

e High confidence. In the phase of yielding dense pixel-wise annotations, identify-
ing pixels located at complex boundaries or in the shadow is not only time- and
labor-consuming but also error-prone, especially when faced with natural objects.
As shown in Figure 4.3, geometry shapes of trees are very complex, and pixels in
the shadow are obscure and even arduous for remote sensing experts to correctly
distinguish whether they belong to trees or roads. Nonetheless, in generating scrib-
bled annotations, such difficulties can be avoided, as it is not mandatory to identify
all pixels at boundaries or in the shadow. Therefore, annotators can just label ex-
plicit pixels which leads to the high confidence of scribbled labels and free of noisy
supervisory signals.

4.2.2 Preliminaries

Albeit enjoying cheap acquisition and high confidence, scribbled annotations are sparse and
disable fully supervised learning of semantic segmentation networks. Therefore, digging
out semantics from image contexts plays a crucial role in learning with sparse scribbled
annotations. To reach this goal, most of the existing researches [196, 197, 198] share a
common assumption that pixels of homogeneous appearances (e.g., RGB values or inten-
sities) and located nearby should contain identical semantics and be categorized into the
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Figure 4.4: Nlustration of two pipelines for learning with sparse segmentation. In (a), pixels are
clustered into superpixels for label and semantic propagation before training networks.
In (b), predicted masks are fed to a graph model for regularization based on input
image contexts.

same class, and thus two pipelines are often followed: 1) clustering pixels into superpixels
for label and semantic propagation and 2) regularizing predicted masks according to input
image contexts. Figure 4.4 shows visual illustrations of the two pipelines. An example
of the former is that the authors in [199] partition an image into superpixels and assign
those overlapping scribbled annotations corresponding labels. Thus, semantic labels can
be propagated from annotated pixels to unlabeled ones in common superpixels. As to
the latter, the most frequent implementation is to regularize predictions with a graphical
model, e.g., fully connected CRF [200], so that predicted segmentation masks are forced
to accord with the spatial pattern of original images. Before diving into related literature,
we briefly introduce Simple Linear Iterative Clustering (SLIC) [198] and fully connected
CRF in this subsection.

SLIC is a simple yet computationally efficient superpixel generation algorithm. Specifi-
cally, an image is first projected into the CIELAB color space !, and each pixel is repre-
sented as a vector consisting of lightness (L), red/green value (a), blue/yellow value (b),
and coordinates (x, y). Afterwards, superpixels are generated by clustering pixel vectors
through K-Means [201] but within a limited search region, and output clusters are so-
called superpixels. Initially, k& cluster centers are evenly sampled from an image, and the
size of the search region of each center is defined as four times larger than the superpixel
size. Pixels are assigned to the nearest cluster centers within their search regions. Once all
pixels are sorted out, cluster centers are updated by calculating the mean of pixel vectors
located inside. These processes should be iteratively conducted until the distance between
the new and previous center is smaller than a certain threshold.

Fully connected CRF, also known as dense CRF, maximizes label agreement between
adjacent and similar-looking pixels by minimizing their Gibbs energy. The energy function
is defined as:

E= Zeu(mi) + Zep(xi,xj), (4.1)

nternational Commission on Illumination (Commission Internationale de 1°Eclairage) (CIE). http:
//cie.co.at/
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where 6,(z;) is the unary potential and calculated as 6,(z;) = —log P(x;). Here z;
ranges over all pixels of an image, and P(z;) indicates the label probability of pixel i.
Op(xs, ;) measures pairwise potentials between pixel ¢ and j and in our case, we only
adopt two Gaussian kernels. Thus, the pairwise potential can be computed with the
following equation:

Op (i, x5) = (@i, z;)(wiks + waks), (4.2)

and k1 and ko are calculated as:

_llpi=pill® HIrIjHQ)
Y

k1 =exp
( 29%.”2 29% (43)

where p; and I; indicate the position and color intensity of pixel ¢. 61, 02, and 03 are
hyperparameters that control the kernel “scale”. In Eq. 4.3, k1 is known as appearance
kernel and tends to classify adjacent pixels with comparable appearances, i.e., color inten-
sities, into the same classes, while ks, so-called smoothness kernel, penalizes pixels nearby
but assigned different labels. In Eq. 4.2, u(x;,x;) is a label compatibility term and pe-
nalizes pairs of pixels nearby but categorized into contradictory classes, such as car and
river or desert and ship. As a consequence, predicted masks become smoother within
homogeneous areas and more semantically compatible in local regions.

4.2.3 Learning with Sparse Scribbled Annotations

Sparse scribbled annotations are easy to obtain and of high confidence. Nonetheless, there
are very limited researches in semantic segmentation with such annotations, and among
them, semi-supervised learning is dominant. In [202], point-level annotations are first
employed to train semantic segmentation networks, e.g., FCN, on natural images with
auxiliary abjectness [203]|, which indicates how likely each pixel belongs to foreground
objects or the background. In [199], the authors make the first attempt to learn semantic
segmentation networks under scribble-supervision and propagate semantic labels from
squiggles to unlabeled pixels through a graphical model built on superpixels of training
images. Inspired by successes in segmenting natural images, research interests in applying
scribbled annotations to semantic segmentation of aerial imagery are arising, and several
efforts [196, 197] have been deployed in recent years. Wu et al. [196] study the effectiveness
of scribble-level annotations in building footprint segmentation and synthesize obb-scribble
masks by fitting oriented bounding boxes around scribbles. Afterwards, an adversarial
architecture is employed to generate building footprint masks from aerial images and
enforce them to resemble obb-scribble masks. In [197], the authors aim to tackle the
problem of inaccurate boundary prediction that results from training networks on polygon-
level annotations and employ a fully connected CRF to refine predicted segmentation
masks. To address the same issue, Lu et al. [204] generate pseudo annotations around
object boundaries by replacing regions along predicted boundaries with contents randomly
cropped from other predicted masks, and both pseudo and scribbled annotations are used
to learn semantic segmentation networks. In [205], point- and scribble-level annotations
are treated as low-cost supplementary data and taken as input for generating relevance
maps, where high values indicate strong relevance between unlabeled pixels and scribbled
annotations. Afterwards, relevance maps, aerial images, and feature maps extracted by
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(d)

Figure 4.5: Example unconstrained aerial images in the MAI dataset. Their scene-level multiple
labels are here: (a) farmland and residential; (b) baseball, woodland, parking lot, and
tennis court; (c) commercial, parking lot, and residential; (d) woodland, residential,
river, and runway; (e) river and storage tanks; (f) beach, woodland, residential, and
sea.

a pre-trained VGG are fed to the proposed attention-guided multi-scale segmentation
network for inferring corresponding masks. In [206], the authors learn to extract road
surfaces under the supervision of road centerline-like line-level annotations. Specifically,
SLIC is employed to generate superpixels of input images, and then a graph is built on
superpixels to produce road proposal masks and broadened road centerlines. Afterwards,
the proposed scribble-based weakly supervised road surface extraction method, namely
ScRoadExtractor, is trained to simultaneously predict road proposal masks and boundary
masks, which are extracted by Holistically-nested Edge Detection (HED) algorithm [207].
Compared to the progress of semantic segmentation with dense pixel-wise annotations,
researches about incorporating sparse and incomplete labels are far from sufficient, and
this task showcases great potential in real-world applications.

4.3 Data and Evaluation Metrics

In contrast to the booming development of single-scene aerial image datasets, existing
multi-scene aerial image datasets are extremely scarce. In [194], the authors propose a
multi-scene dataset, namely MAI, where 3923 aerial images are taken from Google Earth
imagery over Europe and North America. The size of each image is 512 x 512, and spatial
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(b)

Figure 4.6: Example scribbled pixel-wise annotations. (a) is reproduced from the Massachusetts
Buildings dataset [208]. (b) is generated by discarding labels in the ISPRS Vaihin-
gen dataset?. Black pixels are unlabeled, and those with other colors are assigned
semantic labels.

resolutions vary from 0.3 m/pixel to 0.6 m/pixel. The authors define 24 scene labels,
including apron, baseball, beach, commercial, farmland, woodland, parking lot, port, res-
idential, river, storage tanks, sea, bridge, lake, park, roundabout, soccer field, stadium,
train station, works, golf course, runway, sparse shrub, and tennis court. Each aerial image
is then visually inspected and assigned multiple scene labels according to their contents.
Figure 4.5 shows several samples. Following this work, a large-scale multi-scene aerial im-
age dataset, termed MultiScene, is proposed in [195]. In total, 100,000 unconstrained aerial
images are cropped from Google Earth imagery and cover Europe, Asia, North America,
South America, Africa, and Oceania. The number of scene classes is increased to 36, and
14,000 images are manually annotated. Besides, all images are assigned with labels crawled
from OSM. Since the MultiScene dataset is the major contribution of our fuorth work, we
present a more specific introduction in Chapter 5.4. Since multi-scene recognition is, in
essence, a multi-label problem, and thus, the evaluation metrics introduced in Chapter 3.4
are also applied to validate the performance of multi-scene recognition networks.

For evaluating the performance of networks learned on incomplete scribbled labels,
current researches mainly generate synthetic labels by conducting morphological trans-
formations, i.e., erosion, on dense pixel-wise annotations provided in existing semantic
segmentation datasets. For example, Maggiolo et al. [197] morphologically discard 60%
of original labels, especially those of boundary pixels (cf. Figure 4.6a). Besides, Wu
et al. [196] experiment with both automatic and manual scribble generation, but only
one semantic class is taken into consideration (see Figure 4.6b). Recently, in [194], the
authors ask four human annotators (two remote sensing experts and two non-experts)
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Table 4.1: The total numbers of pixels labeled with sparse point-, line-, and polygon-level anno-
tations (middle three columns) and dense annotations (right column) in the Vaihingen
and Zurich Summer datasets.

Dataset Name Point Line Polygon Dense*

ISPRS Vaihingen | 18,787 480,593 4,591,409 | 54,373,518
Zurich Summer | 20,508 330,767 1,445,270 | 12,266,287

*Background /Clutter is not counted.

Figure 4.7: Example scribbled pixel-wise annotations of the ISPRS Vaihingen dataset. The 2nd
and 3rd columns are made by experts, and the left two are created by non-experts.
Legend— : impervious surfaces, blue: buildings, cyan: low vegetation,
trees, : cars.

to relabel the ISPRS Vaihingen ® and Zurich summer [209] datasets with points, scrib-
bles, and polygons. Instruction is given before annotation to ensure that non-experts are
equipped with primary knowledge of data labeling. Figure 4.7 shows example annotations
created by four annotators, and Table 4.1 compares the number of yielded incomplete
annotations and original dense labels. To evaluate the performance of network trained
on scribbled annotates, the evaluation metrics mentioned in Chapter 3.4 can be leveraged

Shttps://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/
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as well. Besides, it is interesting to see that for scenes sharing homogeneous appearance,
networks trained on incomplete labels can achieve comparable performance in comparison
with those trained on dense labels (see the column tree in Table 5.5).
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To reach the objectives of this thesis, the author deploy efforts in the following four aspects:

CNN

A hybrid convolutional and bidirectional LSTM network is proposed for categorizing
multiple objects present in an aerial scene image. The network is featured by mod-
eling label dependencies through a bi-directional LSTM, and details are introduced
in Chapter 5.1.

Relation networks are introduced to the multi-label object classification task, and
an attention-aware label relational reasoning network is proposed and detailed in
Chapter 5.2.

To facilitate the progress of multi-label object classification, two high resolution
aerial image datasets, namely the DFC15 and AID multilabel datasets, are created
and made publicly available. Chapter 5.1 and 5.2 describe these two datasets, re-
spectively.

A prototype-based memory network is proposed for multi-scene recognition, and it
mimics how humans perceive complex scenes by learning and memorizing individual
scenes in advance. Chapter 5.3 delineates the composition and mechanism of the
proposed network.

Two multi-scene aerial image datasets, termed as MAI and MultiScene datasets, are
published and introduced in Chapter 5.3 and 5.4, respectively. In the latter dataset,
not only manual annotations but also crowdsourced annotations are provided which
enables researches in network learning from noisy labels for multi-scene recognition.

In Chapter5.5, a framework for semantic segmentation of aerial images based on
incomplete annotations is described. In contrast to previous studies where synthetic
scribbled labels are used, this work evaluates the effectiveness of the pipeline in a
real-world scenario where four annotators (including two non-experts) are asked to
manually yield point-, line-, and polygon-level annotations.

In this chapter, a brief summary of the five peer-reviewed articles made by the author (as
the first author) is presented.

5.1

Exploiting label correlations with bidirectional LSTM
for multi-label object classification

5.1.1 Motivation

Current researches [210, 126, 211, 131] in aerial image multi-label object classification
deploy limited efforts to model inherent correlations between various objects for identifying
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co-existing objects. However, in the real-life world, certain object categories can have
strong relevances, for example, cars are often driven or parked on pavements, and ships
are piloted or harbored on the water in most cases. To demonstrate the class dependency,
we calculate conditional probabilities for each of two categories. Let C). denote referenced
class, and C), denote potential co-occurrence class. Conditional probability P(C)|C;),
which depicts the possibility that C), exhibits in an image, where the existence of C) is
priorly known, can be solved with Eq. 5.1,

P(Cy, C))
P(Cr)

P(Cp,C,) indicates the joint occurrence probability of C), and C,., and P(C,) refers to
the priori probability of C,.. Conditional probabilities of all class pairs in UCM multi-
label datasets are listed in Figure 5.1, and it is intuitive that some classes have strong
dependencies. For instance, it is highly possible that there are pavements in images, which
contain airplanes, buildings, cars, or tanks. Moreover, it is notable that class dependencies
are not symmetric due to their particular properties. For example, P(sea|ship) is twice
as P(ship|sea) due to the reason that the occurrence of ships always infer to the co-
occurrence of sea, while not vice versa. Therefore, to thoroughly dig out the correlation
among various classes, it is crucial to model class probabilistic dependencies bidirectionally
in a classification method.

To this end, we boil the multi-label classification down into a structured output problem,
instead of a simple regression issue, and employ a unified framework of a CNN and a
bidirectional Recurrent Neural Network (RNN) to 1) extract semantic features from raw
images and 2) model image-label relations as well as bidirectional class dependencies,
respectively.

P(G|Cr) = (5.1)

5.1.2 Methodology

The proposed CA-Conv-BiLSTM, as illustrated in Figure 5.2, is composed of three com-
ponents: a feature extraction module, a class attention learning layer, and a Bidirectional
LSTM-based recurrent sub-network. More specifically, the feature extraction module em-
ploys a stack of interleaved convolutional and pooling layers to extract high-level fea-
tures, which are then fed into a class attention learning layer to produce discriminative
class-specific features. Afterwards, a bidirectional LSTM-based recurrent sub-network
is attached to model both probabilistic class dependencies and underlying relationships
between image features and labels.

Dense High-level Feature Extraction. Learning efficient feature representations
of input images is extremely crucial for image classification task. To this end, a modern
popular trend is to employ a CNN architecture to automatically extract discriminative
features, and thus, our model adapts VGG-16 [10], one of the most welcoming CNN
architectures for its effectiveness and elegance, to extract high-level features for our task.

Specifically, the feature extraction module consists of 5 convolutional blocks, and each of
them contains 2 or 3 convolutional layers (as illustrated in the left of Figure 5.2). Notably,
the number of filters is equivalent in a common convolutional block and doubles after
the spatial dimension of feature maps is scaled down by pooling layers. The receptive
field of all convolutional filters is 3 x 3, which increases nonlinearities inside the feature
extraction module. Besides, the convolution stride is 1 pixel, and the spatial padding
of each convolutional layer is set as 1 pixel as well. Among these convolutional blocks,
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Figure 5.1: The contribution matrix of labels in UCM dataset. Labels at X-axis represent ref-
erenced classes C,, while labels at Y-axis are potential co-occurrence classes C).
Conditional probabilities P(Cy|C;) of each class pair are present in corresponding
blocks.

Class Attention Maps

Feature Extraction Module

2-dilated conv

W Grass

Figure 5.2: The architecture of the proposed CA-Conv-BiLSTM for the multi-label classification
of aerial images.

max-pooling layers are interleaved for reducing the size of feature maps and meanwhile,
maintaining only local representative, such as, maximum in a 2 x 2-pixel region. The size
of pooling windows is 2 x 2 pixels, and the pooling stride is 2 pixels, which halves feature
maps in width and length.
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Features directly learned from a conventional CNN (e.g., VGG-16) are proved to be
high-level and semantic, but their spatial resolution is significantly reduced, which is not
favorable for generating high-dimensional class-specific features in the subsequent class
attention learning layer. To address this, max-pooling layers following the last two convo-
lutional blocks are discarded in our model, and atrous convolutional filters with dilation
rate 2 are employed in the last convolutional block for preserving original receptive fields.
Consequently, our feature extraction module is capable of learning high-level features with
finer spatial resolution, so called “dense”, compared to VGG-16, and it is feasible to ini-
tialize our model with pre-trained VGG-16, considering that all filters have equivalent
receptive fields.

Moreover, it is worth nothing that other popular CNN architectures can be taken as
prototypes of the feature extraction module, and thus, we extend researches to Googl.eNet
[12] and ResNet [15] for a comprehensive evaluation of CA-Conv-BiLSTM. Regarding
GoogLeNet, i.e., Inception-v3 [11], the stride of convolutional and pooling layers after
“mized7” is reduced to 1 pixel, and the dilation rate of convolutional filters in “mired9”
is 2. For ResNet (we use ResNet-50), the convolution stride in last two residual blocks is
set as 1 pixel, and the dilation rate of filters in the last residual block is 2. Besides, layers
after global average pooling layers, as well as itself, are removed to ensure dense high-level
feature maps.

Class Attention Learning Layer. Although Features extracted from pre-trained
CNNs are high-level and can be directly fed into a fully connected layer for generating
multi-label predictions, it is infeasible to learn high-order probabilistic dependencies by
recurrently feeding it with identical features. Therefore, extracting discriminative class-
wise features plays a key role in discovering class dependencies and effectively bridging
CNN and RNN for multi-label classification tasks.

Here, we propose a class attention learning layer to explore features with respect to each
category, and the proposed layer, illustrated in the middle of Figure 5.2, consists of the
following two stages: 1) generating class attention maps via a 1 x 1 convolutional layer
with stride 1, and 2) vectorizing each class attention map to obtain class-specific features.
Formally, given feature maps X, extracted from the feature extraction module, with a
size of W x W x K, and let w; represent the [-th convolutional filter in the class attention
learning layer. The attention map M for class [ can be obtained with the following
formula:

Ml =X % wi, (5.2)

where [ ranges from 1 to the number of classes. Besides, * represents convolution operation.
Given that the size of convolutional filters is 1 x 1, and the stride is 1, Eq. 5.2 can be
further modified as:

K
Mi(p,q) = Y wipXr(p, q), (5.3)
k=1

where p,q = 1,2,--- , W, and M;(p,q) and X(p,q) indicate activations of the class at-
tention map M and the k-th channel of X at a spatial location (p, q), respectively. wyj
is the k-th channel of w;. The modified formula highlights that a class attention map M,
is intrinsically a linear combination of all channels in X', and w; ;. depicts the importance
of the k-th channel of X for class [. Therefore, M;(p, q) with a strong activation suggests
that the region is highly relevant to class [, and vice versa.

44



5.1 Exploiting label correlations with bidirectional LSTM for multi-label object classification

Subsequently, class attention maps M, are transformed into class-wise feature vectors
v; of W2 dimensions by vectorization. Instead of fully connecting class attention maps to
each hidden unit in the following layer, we construct class-wise connections between class
attention maps and their corresponding hidden units, i.e., corresponding time steps in a
LSTM layer in our network. In this way, features fed into different units are retained to
be class-specific discriminative and significantly contribute to exploitation of the dynamic
class dependency in the subsequent bidirectional LSTM layer.

Class Dependency Learning via a BiLSTM-based Sub-network. As an im-
portant branch of neural networks, RNN is widely used in dealing with sequential data,
e.g., textual data and temporal series, due to its strong capabilities of exploiting implicit
dependencies among inputs. Unlike CNN, RNN is characterized by its recurrent neurons,
of which activations are dependent on both current inputs and previous hidden states.
However, conventional RNNs suffer from the gradient vanishing problem and are found
difficult to learn long-term dependencies. Therefore, in this work, we seek to model class
dependencies with an LSTM-based RNN.

Instead of directly summing up inputs as in a conventional recurrent layer, an LSTM
layer relies on specifically designed hidden units, LSTM units, where information, such
as the class dependency between category [ and [ — 1, is “memorized”, updated, and
transmitted with a memory cell and several gates. Specifically, given a class-specific feature
v; obtained from the class attention learning layer as an input of the LSTM memory cell
c; at time step [, and let h; represent the activation of ¢;. New memory information ¢,
learned from the previous activation h;_; and the present input feature v;, is obtained as
follows:

¢ = tanh(W,,v; + W hi—1 + b.), (5.4)

where W,,, and W, denote weight matrix from input vectors to memory cell and hidden-
memory coefficient matrix, respectively, and b, is a bias term. Besides, tanh(-) is the
hyperbolic tangent function. In contrast to conventional recurrent units, where the ¢; is
directly used to update the current state h;, an LSTM unit employs an input gate 2; to
control the extent to which ¢; is added, and meanwhile, partially omits uncorrelated prior
information from ¢;_; with a forget gate f;. The two gates are performed by the following
equations:

i, = o(Wiyvi + Wiphi_1 + Wicei—1 + b;),

5.5
fi = oc(Wpov + Wiphi_y + Wyeei_1 + by). (5:5)

Consequently, the memory cell ¢; is updated by
a=uoa+ fioe-, (5.6)

where @ represents element-wise multiplication. Afterwards, an output gate o;, formulated
by
(e U(Wovvl + Wohhl—l + Woccl + b0)7 (57)

is designed to determine the proportion of memory content to be exposed, and eventually,
the memory cell ¢; at time step [ is activated by

h; = o; tanh(¢y). (5.8)
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Figure 5.3: Illustration of the bidirectional structure. The direction of the upper stream is op-
posite to that of the lower stream. Notably, h]_,, ¢/_; denotes the activation and
memory cell in the upper stream at the time step, which corresponds to class [ —1 for
convenience (considering that the subsequent time step is usually denoted as I + 1).

Although it is not difficult to discover that the activation of the memory cell at each
time step is dependent on both input class-specific feature vectors and previous cell states.
However, taking into account that the class dependency is bidirectional, as demonstrated in
Section 5.1.1, a single-directional LSTM-based RNN is insufficient to draw a comprehensive
picture of inter-class relevance. Therefore, a bidirectional LSTM-based RNN, composed of
two identical recurrent streams but with reversed directions, is introduced in our model,
and the hidden units are updated based on signals from not only their preceding states
but also subsequent ones.

In order to practically adapt a bidirectional LSTM-based RNN to modeling the class
dependency, we set the number of time steps in our bidirectional LSTM-based sub-network
equivalent to that of classes under the assumption that distinct classes are predicted at
respective time steps. Such design enjoys two outstanding characteristics: on one hand,
the LSTM memory cell at time step I, ¢;, focuses on learning dependent relationship
between class [ and others in dual directions (cf. Figure 5.3), and on the other hand,
the occurrence probability of class [, P, can be predicted from outputs [hy, hj] with a
single-unit fully connected layer:

Py = o(wi[hy, h] + by), (5.9)

where k) denotes the activation of ¢; in the other direction, and o is used as the activation
function.

5.1.3 Results

Table 5.1 exhibits results on UCM multi-label dataset, and it can be seen that compared
to directly applying standard CNNs to multi-label classification, CA-Conv-LSTM frame-
work performs superiorly as expected due to taking class dependencies into consideration.
Mostly enjoying this framework, CA-GoogLeNet-LSTM achieves the best mean Fy score
of 81.78% and an increment of 1.10% in comparison with other CA-Conv-LSTM models
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Table 5.1: Quantitative Results on UCM Multi-label Dataset (%)

Model mEF; mEF; mEP mER mCP mCR
VGGNet [10] 78.54  80.17 79.06 82.30 86.02 80.21
VGG-RBFNN [126] 78.80 81.14 7818 8391 81.90 82.63
CA-VGG-LSTM 79.57  80.75 80.64 8247 87.74 75.95
CA-VGG-BIiLSTM 79.78 81.69 79.33 83.99 85.28 76.52
GoogLeNet [12] 80.68  82.32 80.51 84.27 87.51 80.85
GoogLeNet-RBFNN [126] 81.54  84.05 79.95 86.75 86.19 84.92
CA-GoogLeNet-LSTM 81.78 85.16 78.52 88.60 86.66 85.99
CA-GoogLeNet-BiLSTM 81.82 84.41 79.91 87.06 86.29 84.38
ResNet-50 [15] 79.68 80.58 80.86 81.95 88.78  78.98
ResNet-RBFNN [126] 80.58 8247 79.92 84.59 86.21 83.72
CA-ResNet-LSTM 81.36  83.66 79.90 86.14 86.99 82.24

CA-ResNet-BiLSTM 81.47 85.27 7794 89.02 86.12 84.26

mEF5 indicate the mean example-based Fy score.

and GoogleNet, respectively. Concerning the signification of employing a bidirectional
structure, CA-Conv-BiLSTM performs better than CA-Conv-LSTM in the mean F} score,
and compared to Conv-RBFNN, our models achieve higher mean F; and Fb scores, in-
creased by at most 0.98% and 2.80%, respectively. Another important observation is that
our proposed model is equipped with higher example-based recall but lower example-based
precision, which leads to a relatively higher mean Fy score.

In addition to validate classification capabilities of the network by computing the mean
F5 score, we further explore the effectiveness of class-specific features learned from the
proposed class attention learning layer and try to“open” the black box of our network by
feature visualization. Example class attention maps produced by the proposed network
on UCM multi-label dataset are shown in Figure 5.4. As we can see, these maps highlight
discriminative regions for positive classes, while present almost no activations when corre-
sponding objects are absent in original images. For example, object labels of the image at
the first row in Figure 5.4 are building, grass, pavement, and tree, and its class attention
maps for these categories are strongly activated.

We also evaluate our network on the DFC15 multi-label dataset. The dataset is con-
structed based on a semantic segmentation dataset, DFC15 (see Chap 3.4.1). we crop its
tiles into images of 600 x 600 pixels with a 200-pixel-stride sliding window and discard
images containing unclassified pixels. Labels of each image are yielded by aggregating its
included pixel-level labels. For more experimental results and technical details on DFC15
as well as UCM multi-label datasets, please refer to Appendix A.
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Figure 5.4: Example class attention maps of (a) images in UCM multi-label dataset with respect
to (b) bare soil, (c¢) building, (d) car, (e) court, (f) grass, (g) pavement, (h) tree, and
(i) water. Red indicates strong activations, while blue represents non-activations.
Besides, normalization is performed based on each row for a fair comparison among
class attention maps of the same images.

5.2 Reasoning about label relations for multi-label object
classification

5.2.1 Motivation

In order to explicitly model label relations, we propose a label relational inference net-
work for multi-label aerial image classification. This work is inspired by recent successes
of relation networks in visual question answering [212], object detection [213], video clas-
sification [214], activity recognition in videos [215], and semantic segmentation [216]. A
relation network is characterized by its inherent capability of inferring relations between
an individual entity (e.g., a region in an image or a frame in a video) and all other en-
tities (e.g., all regions in the image or all frames in the video). Besides, to increase the
effectiveness of relational reasoning, we make use of a spatial transformer, which is often
used to enhance the transformation invariance of deep neural networks [217], to reduce
the impact of irrelevant semantic features.

5.2.2 Methodology

As illustrated in Figure 5.5, the proposed network comprises three components: a label-
wise feature parcel learning module, an attentional region extraction module, and a label
relational inference module. Let L be the number of object labels and [ be the I-th label.
The label-wise feature parcel learning module is designed to extract high-level feature
maps X; with K channels, termed as feature parcel, for each label [. The attentional region
extraction module is used to localize discriminative regions in each X; and generate an
attentional feature parcel A;, which is supposed to contain the most relevant semantics
with respect to the label [. Finally, relations among A; and all other label-wise attentional
feature parcels are reasoned about by the label relational inference module for predicting
the presence of the object .

Label-wise Feature Parcel Learning. We take a standard CNN as the backbone of
the label-wise feature parcel learning module in our model. As shown in Figure 5.5, an
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Figure 5.6: Illustration of the attentional region extraction module. Green dots in the left image
indicate the feature parcel grid Gx,. White dots in the middle image represent the
attentional feature parcel grid G Xattn, while those in the right image indicate re-
coordinated G xpttn. Notably, the structure of re-coordinated G xpttn 18 identical to
that of G'x,, and values of pixels located at grid points in re-coordinated G Xgttn are
obtained from those in G xpttn- For example, the pixel at the left top corner grid point
in re-coordinated G xgttn 18 assigned with the value of that at the left top corner of
GXlatt’n. .

aerial image is first fed into a CNN (e.g., VGG-16), which consists of only convolutional and
max-pooling layers, for generating high-level feature maps. Subsequently, these features
are encoded into L feature parcels for each label [ via a label-wise multi-modality feature
learning layer. To implement this layer, we first employ a convolutional layer with KL
filters, whose size is 1 x 1, to extract KL feature maps. Afterwards, we divide these
features into L feature parcels, and each includes K feature maps. That is to say, for each
label, K specific feature maps are learned, so-called feature parcel, to extract discriminative
semantics after the end-to-end training of the whole network. We denote the feature parcel
for label [ as X; in the following statements.

In our experiment, we notice that X; with a higher resolution is beneficial for the
subsequent module to localize discriminative regions, as more spatial contextual cues are
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included. Accordingly, we discard the last max-pooling layer in VGG-16, leading to a
spatial size of 14 x 14 for outputs. Weights are initialized with pre-trained VGG-16 on
ImageNet but updated during the training phase.

Attentional Region Extraction Module. Although label-wise feature parcels can
be directly applied to exploring label dependencies [141], less informative regions (see blue
areas in Figure 5.6) may bring noise and further reduce the effectiveness of these feature
parcels. As shown in the left image of Figure 5.6, weakly activated regions indicate a loose
relevance to the corresponding label, while highlighted regions suggest a strong region-
label relevance. To diminish the influence of unrelated regions, we employ an attentional
region extraction module to automatically extract discriminative regions from label-wise
feature parcels.

We localize and re-coordinate attentional regions from X; with a learnable spatial trans-
former. Particularly, we sample a feature parcel X, into a regular spatial grid Gx, (cf.
green dots in the left image of Figure 5.6) according to the spatial resolution of X; and
regard pixels in X; as points on the grid Gx, with coordinates (z,y;). Similarly, we can

define coordinates of a new grid, attentional region grid G xgten (see white dots in the
attn , attn

middle image of Figure 5.6), as (""", y**"), and the number of grid points along with the
height and width is equivalent to that of Gx,. As demonstrated in [217] that G Xattn Can

be learned by performing spatial transformation on Gx,, (", y#") can be calculated

with the following equation:

pattn T

|: éttn:| = MTl Y| (510)
Y; 1

where M, is a learnable transformation matrix, and grid coordinates, z; and y;, are
normalized to [—1,1]. Considering that this module is designed for localization, we only
adopt scaling and translation in our case. Hence Eq. 5.10 can be rewritten as

x?tt” sy 0ty i
L/latm] a [ 0 sy tyz] yll ’ (5:11)
where s;, and s,, indicate scaling factors along x- and y-axis, respectively, and t,, and
ty, represent how feature maps should be translated along both axes. Notably, since
different objects distribute variously in aerial images, M, is learned for each object label
[ individually. In other words, extracted attentional regions are label-specific and capable
of improving the effectiveness of label-wise features.

As to the implementation of this module, we first vectorize X; with a flatten function
and then employ a localization layer (e.g., a fully connected layer) to estimate elements in

7, from the vectorized X;. Afterwards, attentional region grid coordinates (", ytm)
can be learned from (z;,y;) with Eq. 5.11, and values of pixels at (z{*", y™) is able to be
obtained from neighboring pixels by bilinear interpolation. Flnally, the attentional region
grid G xgttn is re-coordinated to a regular spatial grid, which shares an identical structure
with Gx,, for yielding the final attentional feature parcel A;.

Label Relational Inference Module. Being the core of our model, the label rela-
tional inference module is designed to fully exploit label interrelations for inferring exis-
tences of all labels. Before diving into this module, we define the pairwise label relation
as a composite function with the following equation:

LR(A1, Am) = fo5(96,,, (A1, Am)), (5.12)
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Figure 5.7: Illustration of the label relation module.

where the input is a pair of attentional feature parcels, A; and A,,, and [ and m range from
1 to L. The functions gg, , and fy are used to reason about the pairwise relation between
label [ and m. More specifically, the role of gg, is to reason about whether there exist
relations between the two objects and how they are related. In previous works [212, 215],
a Multilayer Perceptron (MLP) is commonly employed as gy, = for its simplicity. However,
spatial contextual semantics are not taken into account in this way. To address such issue,
here, we make use of 1 x 1 convolution instead of an MLP to explore spatial information.
Furthermore, fy is applied to encode the output of gy,  into the final pairwise label relation
LR(A;, A,,). In our case, f, consists of a global average pooling layer and an MLP, which
finally yields the relation between label | and m.

Following the motivation of our work, we infer each label by accumulating all related
pairwise label relations, and the accumulated label relation for object label [ is defined as:

LR(A;, ) = f5( 9,,, (A1, A)), (5.13)
m#£l

where * represents all attentional feature parcels except A;. Based on this formula, we
implement the label relational inference module with the following steps (taking the pre-
diction of label I as an example): 1) A; and every other attentional feature parcel are
concatenated and fed into a 1 x 1 convolutional layer, respectively. 2) Afterwards, a global
average pooling layer is employed to transform gy, (A;, A,,) into vectors, which are then
element-wise added. 3) Finally, the output is fed into an MLP layer with trainable param-
eters ¢ to produce the accumulated label relation LR(A;, ). Note that gy,  is a learnable
unit, which models pairwise relations using convolutions. Through the end-to-end train-
ing, it could be expected to learn data-driven label relations. Experiments have verified
that learned label relations are in line with prior knowledge. Since we expect the model
to predict probabilities, an activation function o is utilized to restrict each output digit
to [0, 1]. For label [, a digit approaching 1 implies a high probability of its presence, while
one closing 0 suggests the absence. Figure 5.7 presents an visual illustration of the label
relational inference module.
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Table 5.2: Comparisons of the classification performance on UCM Multi-label Dataset (%).

Network mEF; mEF; mEP mER mCP mCR
VGGNet [10] 78.54  80.17 79.06 82.30 86.02 80.21
VGG-RBFNN [126] 78.80  81.14 78.18 8391 81.90 82.63
CA-VGG-BILSTM [141] 79.78  81.69 79.33 83.99 85.28  76.52
AL-RN-VGGNet 85.70  85.81 87.62 86.41 91.04 81.71
GoogLeNet [12] 80.68  82.32 80.51 84.27 87.51 80.85

GoogLeNet-RBFNN [126] 81.54 84.05 79.95 86.75 86.19 84.92
CA-GoogLeNet-BiLSTM [141] 81.82 8441 79.91 87.06 86.29 84.38

AL-RN-GoogLeNet 85.24 8533 87.18 85.86 91.03 81.64
ResNet-50 [15] 79.68 80.58 80.86 81.95 88.78  78.98
ResNet-RBFNN [126] 80.58 8247 79.92 84.59 86.21 83.72
CA-ResNet-BiLSTM [141] 81.47 8327 7794 89.02 86.12 84.26
AL-RN-ResNet 86.76  86.67 88.81 87.07 92.33 85.95

Figure 5.8: Example attentional regions for car, bare soil (soil), building (build.), pavement
(pave.), court, and tank in various scenes (a)-(d) in the UCM multi-label dataset.

5.2.3 Results

Table 5.2 exhibits experimental results on the UCM multi-label dataset. We can observe
that our model surpasses all competitors on the UCM multi-label dataset with variant
backbones. Specifically, AL-RN-VGGNet increases mean F; and Fy scores by 7.16% and
5.64%, respectively, in comparison with VGGNet. Compared to CA-VGG-BiLSTM, which
resorts to employing a bidirectional LSTM structure for exploring label dependencies,
our network obtains an improvement of 5.92% in the mean F; score.To further evaluate
the proposed network, we visualize attentional regions learned from the second module.
Figure 5.8 shows some examples of learned attentional regions. As we can see, most
attentional regions concentrate on areas covering objects of interest.

We also evaluate our network on the AID multi-label dataset which is produced by
relabeling 3000 aerial images in the AID dataset. For each of the 30 scene categories in
AID, we evenly select 100 images and assign each multiple labels through manual visual
inspection. For more numerical and visual results, please refer to Appendix B.
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Figure 5.9: Illustration of how humans learn to perceive unconstrained aerial images being com-
posed of multiple scenes. We first learn and memorize individual aerial scenes. Then
we can possess the capability of understanding complex scenarios by learning from
only a limited number of hard instances. We believe by simulating this learning pro-
cess, a deep neural network can also learn to interpret multi-scene aerial images.

5.3 Memorizing scene prototypes for multi-scene
recognition

5.3.1 Motivation

To learn networks for multi-scene recognition, huge quantities of well-annotated multi-
scene images are needed. However, we note that such annotations are not easy in the
remote sensing community. To solve such a limitation, we propose to train a network
with only a small number of labeled multi-scene images but a huge amount of existing,
annotated single-scene data. Our motivation is based on an intuitive observation about
how humans learn to perceive complex scenes being composed of multiple entities [218,
219, 220]: we first learn and memorize individual objects (through flash cards for example)
when we were babies and then possess the capability of understanding complex scenarios by
learning from only a limited number of hard instances (cf. Figure 5.9). We believe that this
learning process also applies to the interpretation of multi-scene aerial images. Driven by

this observation, we propose a novel network, termed as prototype-based memory network
(PM-Net).

5.3.2 Methodology

As shown in Figure 5.10, the proposed PM-Net consists of three essential components: a
prototype learning module, an external memory, and a memory retrieval module. Specif-
ically, the prototype learning module is devised to encode prototype representations of
aerial scenes, which are then stored in the external memory. The memory retrieval mod-
ule is responsible for retrieving scene prototypes related to query images through a multi-
head attention mechanism. Eventually, retrieved scene prototypes are utilized to infer the
existence of multiple scenes in the query image.

Scene Prototype Learning and Writing. Following the observation, we propose to
learn and memorize scene prototypes with the support of single-scene aerial images. The
procedure consists of two stages. We first employ an embedding function to learn semantic
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Figure 5.10: Architecture of the proposed PM-Net. Particularly, we first learn scene prototypes
ps from well-annotated single-scene aerial images and then store them in the external
memory M of PM-Net. Afterwards, given a query multi-scene image, a multi-head
attention-based memory retrieval module is devised to retrieve scene prototypes that
are relevant to the query image, yielding 2z’ for the prediction of multiple labels. fy4
denotes the embedding function, and its output is a D-dimensional feature vector.
S and H represent numbers of scenes and heads, respectively. L and U denote
channel dimensions of the key and value in the memory retrieval module.

representations of all single-scene images. Then, feature representations belonging to the
same scene category are encoded into a scene prototype and stored in the external memory.

Formally, let X7 denote the ¢-th single-scene image belonging to scene s, and 4 ranges
from 1 to Ns. Nj is the number of samples annotated as s. The embedding function fy4
can be learned via the following objective function:

exp (—g6(f(X7)))
22> exp (—go(fo(X7)))’ (5.14)

S

L(X7,y%) = —y’log

where ¢ represents learnable parameters of fs, and y® is a one-hot vector denoting the
scene label of X?. gy is a multilayer perceptron (MLP) with parameters 6 and its outputs
are activated by a softmax function to predict probability distributions. Following the
overwhelming trend of deep learning, here we employ a deep CNN, e.g., ResNet-50 [15],
as the embedding function f4 and learn its parameters on public single-scene aerial image
datasets. After sufficient training, f, is expected to be capable of learning discriminative
representations for different aerial scenes.

Once fy is learned, the scene prototype can be computed by averaging representations
of all aerial images belonging to the same scene [221, 222, 223]. Let ps be the prototype
representation of scene s. We calculate ps with the following equation:

1
ps = FZJC@S(X{S) (5.15)
5 4=1

By doing so, in the single-scene classification, an image closely around p; in the common
embedding space is supposed to belong to scene s. Similarly, in the multi-scene scenario,
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the representation of an aerial image comprising scene s should show high relevance with
ps. After encoding all scene prototypes, the external memory M can be formulated as
follows:

M = [p17p27--~7pS]T7 (516)

where S denotes the number of scenes. [--- -] represents the concatenation operation.
Given that ps is a D-dimensional vector, M is a matrix of S x D. Note that D varies
when using different backbone CNNs as embedding functions.

Multi-head Attention-based Memory Retrieval. Inspired by successes of the
multi-head self-attention mechanism [109] in natural language processing tasks [224, 225,
226, 227], we develop a multi-head attention-based memory retrieval module to retrieve
scene prototypes from the memory M for a given query image X. Given a query multi-
scene aerial image X, to retrieve relevant scene prototypes from M, we develop a multi-
head attention-based memory retrieval module. In particular, we first extract the feature
representation of X through the same embedding function f, and linearly project it to
an L-dimensional query Q(X). Similarly, we transform the external memory M into key
K(M) and value V(M), and both are implemented as MLPs. The channel dimension
of the key is L, while that of the value is U. The relevance between X and each scene
prototype ps can be measured by dot product similarity and a softmax function as follows:

Q(fe(X)) - K(M)"
VL

The output is an S-dimensional vector, where each component represents a relevance
probability that a specific scene prototype is related to the query image. Subsequently, the
retrieved scene prototypes are computed by weight-summing all values with the following
equation:

R(X, M) = softmax( ). (5.17)

z=R(X,M) V(M). (5.18)

Since the memory retrieval is designed in a multi-head fashion, the final retrieved pro-
totype is reformulated as follows:

2 = [z1,22, ..., 21|, (5.19)

where H denotes the number of heads, and each head yields a retrieved prototype z; by
transforming X and M to the variant query Qu(fs(X)), key K5 (M), and value Vj,(M).
Eventually, the output 2’ is fed into a fully-connected layer followed by a sigmoid function
for inferring presences of aerial scenes.

5.3.3 Results

In order to widely evaluate the performance of our method, we design a dataset con-
figuration, UCM2MAI, based on common scene categories shared by UCM and MAL
Specifically, the UCM2MALI configuration consists of 1600 single-scene aerial images from
the UCM dataset and 1649 multi-scene images from our MAI dataset.

For a comprehensive evaluation, we compare the proposed PM-Net with two baselines,
CNN* and CNN. The former is initialized with parameters pretrained on ImageNet, and
the latter is pretrained on single-scene datasets. Besides, we compare our network with
a memory network, Mem-N2N [228] and a K-Branch CNN [137]. Since Mem-N2N was
proposed for the question answering task, we adapt it to our task by replacing its inputs,
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Table 5.3: Numerical Results on UCM2MAI (%).

Model mEF; mEF; mEP mER mCP mCR
VGGNet* [10] 32.16 3279 35.08 3435 21.74 22.57
VGGNet [10] 51.42  49.04 62.00 48.38 36.80 27.44

Mem-N2N-VGGNet [228] 52.16  50.93 57.26 50.73 20.79 22.58
K-Branch CNN [137] 47.04  43.15 64.57 41.83 37.93 22.28
proposed PM-VGGNet 54.42 51.16 67.35 49.95 47.24 26.79
Inception-V3* [12] 48.03  44.37  62.22 4280 47.36 20.43
Inception-V3 [12] 53.96 51.28 65.47 50.49 51.03 32.88

Mem-N2N-Inception-V3 [228] 56.06  55.27  62.95 5592 4790 30.48
proposed PM-Inception-V3 58.56 58.06 64.17 58.73 46.44 26.47

ResNet* [15] 48.36  45.00 63.90 43.84 53.63 28.35
ResNet [15] 51.39 4831 65.33 47.37 51.89 30.54
Mem-N2N-ResNet [228] 54.31 5145 63.97 50.31 44.33 24.58
proposed PM-ResNet 56.89 54.11 69.85 53.38 55.93 29.76
NASNet* [24] 43.64  39.94 5856 38.39 46.01 19.69
NASNet [24] 52.03 49.43 64.24 48.75 4999 33.75
Mem-N2N-NASNet [228] 55.17  53.05 64.71 52.65 49.60 29.14
proposed PM-NASNet 60.13 59.57 67.04 60.42 58.60 35.04

CNN* is initialized with weights pretrained on ImageNet.
CNN, Mem-N2N, and PM-Net are initialized with parameters pretrained on the
UCM dataset.

i.e., embeddings of questions and statements, with query image representations fs(X) and
scene prototypes ps, respectively. To be more specific, we feed X to a CNN backbone and
take its output as the input of Mem-N2N. Scene prototypes are stored in the memory of
Mem-N2N and retrieved according to fs(X). The initialization of fy is the same as that
of our network, and the entire Mem-N2N is trained in an end-to-end manner. Various
backbones of embedding functions are test, and quantitative results are reported in Table
5.3. Furthermore, we visualize features of single-scene images learned by VGGNet on UCM
and AID datasets via t-SNE, respectively. As shown in Figure 5.11, extracted features are
discriminative and separable in the embedding space, which demonstrates the effectiveness
of learning the embedding function on single-scene aerial image datasets.

We also evaluate the effectiveness of PM-Net on the AID dataset by constructing
AID2MAT which is composed of 7050 and 3239 aerial images from the AID and MAI
datasets, respectively. For more experimental results and technical details, please refer to
Appendix C.

56



5.4 A large-scale dataset and benchmark for multi-scene recognition

3 *
40 3 farmland
basebaill field
* :
20 golf c'oar:‘SE_ . . ‘“!; X e
oo e 't (Y ) Cd Y
SIRES e T dver woodland *
* T § sparse shrub
beach/sea ;
0 *
% ; R sl
y oSt vresidential - " tennis court
storage tanks -“:\-_’-!;.5'.{-5’ {' .
commeréiat™=®! parking lot
-20 L ‘e, . R *
W - o
e .[:.)'c')}t P runway
oept : %, .o
.,%t_‘ apron .r‘$ s -+ Image representation
oS T
40 ) *  Scene prototype
-30 -20 -10 0 10 20 30 40

Figure 5.11: T-SNE visualization of image representations and scene prototypes learned by VG-
GNet on the UCM dataset. Dots in the same color represent features of images
belonging to the same scene, and stars denote scene prototypes.

5.4 A large-scale dataset and benchmark for multi-scene
recognition

5.4.1 Motivation

Multi-scene recognition in single aerial images is a more realistic yet challenging problem,
and it refers to assigning multiple scene labels to an aerial image with no constraints, such
as centering dominant scenes and eliminating clutter scenes. Compared to the conventional
scene recognition task, multi-scene recognition is more arduous because 1) images are
large-scale and unconstrained, and 2) all present scenes in an aerial image need to be
exhaustively recognized. Figure 5.12(b) shows an example of multi-scene aerial image
and corresponding multiple scene-level labels. We can see that not only dominant scenes
(e.g., residential and woodland) but also trivial scenes (e.g., bridge and parking lot) are
annotated, which draws a more comprehensive picture for the unconstrained image.

5.4.2 Benchmark

We collect 100,000 high-resolution aerial images from Google Earth imagery, which cover
six continents, Europe, Asia, North America, South America, Africa, and Oceania, and
eleven countries including Germany, France, Italy, England, Spain, Poland, Japan, the
United States, Brazil, South Africa, and Australia (cf. Figure 5.14). This can ensure
high intra-class diversity, as different scene appearances resulted from different cultural
regions are covered. The spatial resolution of each image ranges from 0.3 m/pixel to 0.6
m/pixel, and the spatial size of images is 512 x 512 pixels. In contrast to single-scene
image datasets [46, 173, 34, 45], we put no constraints on the location and area of the
dominant /trivial scene in an image during the data collection process. Some example
multi-scene images are exhibited in Figure 5.13. In total, 36 scene categories are defined:

o7



5 Summary of works
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(a) Single-scene recognition (b) Multi-scene recognition

Figure 5.12: Examples of images utilized in (a) single-scene and (b) multi-scene recognition tasks.
In (a), each aerial image is assigned one scene label, while in (b), labels of all present
scenes are inferred. In comparison with (b), (a) might suffer from partial scene
understanding, as only one label is predicted even if there indeed exist multiple
scenes in an image. For a clear visualization, locations of scenes are marked in (b).

apron, baseball field, basketball field, beach, bridge, cemetery, commercial, farmland,
woodland, golf course, greenhouse, helipad, lake/pond, oil field, orchard, parking lot,
park, pier, port, quarry, railway, residential, river, roundabout, runway, soccer field, solar
farm, sparse shrub, stadium, storage tanks, tennis court, train station, wastewater, plant,
wind turbine, works, and sea.

To obtain crowdsourced annotations, we first localize each image in OSM with co-
ordinates of its four corners. Afterwards, we parse properties of scenes present in the
corresponding region and label images accordingly. In this way, crowdsourced annotations
of all aerial images can be automatically yielded at a very low cost compared to conven-
tional manual labeling. However, these almost free annotations might suffer from noise,
and the performance of networks directly trained on them could be degraded. Therefore,
we visually inspect 14,000 images from all six continents and correct their labels, yielding
a subset, MultiScene-Clean. Figure 5.14 shows the coordinate distribution of all images,
and the number of samples associated with each scene is present in Figure 5.15. Compared
to other scene recognition datasets introduced in Chapter 3.4, our dataset is featured by
its manifold labels per image and the available crowdsourced annotations. Figure 5.16
further shows the number of images associated with different numbers of scenes.

Compared to existing aerial scene datasets, our dataset brings more challenges to the
field of scene interpretation from the following three perspectives:

e Images are unconstrained and large-scale, and thus scenes are likely to be incomplete
and trivial, which makes recognition more difficult.
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Figure 5.13: Example multi-scene aerial images with their crowdsourced and clean annotations
in the MultiScene dataset.

Figure 5.14: Coordinate distributions and examples of multi-scene aerial images in our dataset.
Red dots denote images with both crowdsourced and clean labels, and cyan dots
represent images with only crowdsourced scene labels.

e The long-tail sample distribution (see Figure 5.15) poses a challenge of learning
unbiased models on an imbalanced dataset.

e We gather images from different cultural regions, which results in a high intra-class
variation.

5.4.3 Results

Since MultiScene allows researches in not only recognizing aerial scenes in the wild but
also learning from noisy crowdsourced labels, we assess all baselines with respect to both
tasks.

Multi-scene Recognition with Cleanly-labeled Data. To evaluate baselines for
our task, we conduct experiments on the MultiScene-Clean dataset and report quantitative
results in Table 5.4. It can be seen that ResNeXt-101 achieves the best mAP (64.8%),
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Figure 5.15: Sample distributions of all scene categories in our dataset. Each cyan bar indicates
the number of images assigned only OSM labels with respect to each scene category,
and red bars represent numbers of images with both OSM and clean labels.
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Figure 5.16: The number of images associated with different numbers of scenes. Y-axis indicates
the number of scenes, and X-axis represents the number of images. The legend is
the same as that in Figure 5.15.

mEF; (70.2%), and OF; score (71.3%), which demonstrate its high performance and
robustness in this task from almost all perspectives. LR-ResNet-50 gains the highest value
in mCF; (59.0%) owing to its capability of reasoning about relations among various scenes.
Moreover, such a reasoning capability also enables LR-ResNet-50 to surpass the other
baselines in all recall metrics, as scenes tend to be predicted as positive once its related
scenes are recognized. Another observation is that MnasNet, SqueezeNet, and ShuffleNet-
V2 show relatively poor performance due to their light-weight designs. Compared to
deep neural networks, traditional machine learning algorithms achieve lower scores in all
metrics.

Learning from Noisy Crowdsourced Labels. We investigate networks learned
from noisy crowdsourced labels for our task on the MultiScene dataset. To ensure a fair
comparison, we utilize the same test set as the previous experiment and compare the
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Table 5.4: Numerical results of baseline models on the MultiScene-Clean dataset (%). Models
are trained and tested on cleanly-labeld images, and the best scores are shown in bold.

Model mAP mCP mCR mCF{ mEP mER mEF, OP OR OF,
SVM 14.9 19.6 84 8.6 62.2 328 41.1 66.9 322 435
RF 15.6 254 8.7 9.5 64.6 325 414 70.9 321 442
XGBOOST 16.9  34.1 11.2 128 | 67.0 374 458 | 696 36.5 479
VGG-16 56.5 63.3 479 53.6 | 749 643 67.0 73.6  63.1 679
VGG-19 56.4 629 477 533 | 748 64.1 66.8 73.5 627  67.7
Inception-V3 53.5 65.0 408 485 | 742 599 639 73.0 58.6 65.0
ResNet-50 62.0 748 459 55.1 79.7 627 679 79.0 614 69.1
ResNet-101 63.0 759 466 558 | 79.9 64.3 69.1 79.2 631 70.3
ResNet-152 63.8 749 49.1 577 | 80.8 640 69.2 | 80.1 62.8 704
SqueezeNet 46.3 58.1 36.8 435 | 71.3 580 613 | 70.0 56.9 62.7

MobileNet-V2 58.8 709 448 53.1 77.6 627 67.0 76.6 61.6  68.3
ShuffleNet-V2 50.7  61.8 381 457 | 73.8 582 625 73.0 57.0 64.0
DenseNet-121 622 746 451 544 | 795 618 673 79.1  60.6 68.6
DenseNet-169 63.2 76.7 458 553 | 804 634 68.6 79.6  62.3  69.9

ResNeXt-50 634 77.3 450 542 | 785 643 686 | 77.8 63.2 69.8
ResNeXt-101 64.8 765 486 573 | 793 66.6 70.2 | 785 654 T1.3
MnasNet 53.8 61.8 429 499 | 73.0 594 63.0 | 72.1 581 64.3
KFBNet 588 688 452 533 | 779 642 68.1 773 63.0 69.4
FACNN 56.5 60.3 487 526 | 73.1 653 66.8 | 71.6 64.1 67.7
SAFF 61.8 725 481 56.7 | 794 639 686 | 787 62.8 69.9
LR-VGG-16 58.1 677 46,7 542 | 773 646 680 | 76.2 635 69.2

LR-ResNet-50 63.1 68.1 53.1 59.0 | 76.7 67.6 69.7 75.3 66.5 70.6

90

80 O mAP on MultiScene-Clean @ mAP on MultiScene O mCF1 on MultiScene-Clean @ mCF1 on MultiScene

O mEF1 on MultiScene-Clean @ mEF1 on MultiScene O OF1 on MultiScene-Clean B OF1 on MultiScene

70
60

0
40
30
20
10

0

vgg-16 Inception-V3  ResNet-50 SqueezeNet MobileNet-V2 ShuffleNet-V2 DenseNet-121 ResNeXt-50 FACNN LR-VGG-16

"

Figure 5.17: Comparisons of the performance of networks trained on images with clean (light-
color bars) and crowdsourced (dark-color bars) annotations, respectively. For each
network, the left four bars represent class-based scores, mAPs and CF;, while the
right four bars indicate EF; and OF; scores.

performance of several networks trained on MultiScene-Clean and MultiScene datasets in
Figure 5.17. It can be observed that higher class-based scores (see orange and brown bars
in Figure 5.17) are obtained when using massive crowdsourced labels. That is to say,
although crowdsourced labels influence the overall performance of networks, comparisons
in class-based scores also suggest their great potential.

For more experimental results and technical details, please refer to Appendix D.
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(b) (©) (d) (e)

Figure 5.18: Comparisons of different levels of scribbled annotations. Trees (marked as )
are taken as an example here. Images from left to right are (a) an aerial image, (b)

point-, (c) line- and (d) polygon-level scribbled annotations, and (e) dense pixel-wise
labels.

5.5 Semantic segmentation of aerial imagery with sparse
annotations

5.5.1 Motivation

Training a fully supervised segmentation CNN requires a huge volume of dense pixel-
level ground truths, which are labor- and time-consuming to generate. Besides, expert
annotators might be needed for correctly identifying pixels located at object boundaries
and ambiguous regions (e.g., shadows in Figure 5.18) which also contributes to the high
cost of dense pixel-wise annotations. To alleviate such a burden, we propose a simple yet
effective framework for semantic segmentation of remote sensing imagery with low-cost
annotations.

5.5.2 Methodology

Supervision with Sparse Annotations. Here we consider three levels of sparse anno-
tations: point-, scribble-, and polygon-level. Specifically, point-level annotations indicate
that, for an annotator interaction, only one single pixel is labeled. Scribble-level annota-
tions, also called line-level annotations, are yielded by drawing a scribble line within an
object and assigning all pixels along this line the same class label. Similarly, polygon-level
annotations can be generated by drawing a polygon within an object and classifying pix-
els located in the polygon into the same semantic class. Examples of these three levels of
annotations are shown in Figure 5.18.

To annotate large-scale images, we employ an online labeling platform, LabelMe !,
and ask annotators to draw by following these rules: 1) for each class, annotations are
supposed to cover diverse appearances (see region a, b, and c in Figure 5.19, where cars of
different colors are annotated) and be located in different positions of the image separately.
2) polygon- and line-level annotations are not required to delineate object boundaries
precisely, see the annotations of trees in Fig. 5.18¢ and 5.18d. In order to make the time

'http://labelme.csail.mit.edu/Release3.0/
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5.5 Semantic segmentation of aerial imagery with sparse annotations

Figure 5.19: Example polygon-level annotations of an image (ID: 13) on the Vaihingen dataset.
Annotations of cars are zoomed in to illustrate that annotations should include
variant visual appearances for one class. Legend— : impervious surfaces, blue:
buildings, cyan: low vegetation, . trees, : cars.

spent on each level of scribbled annotations more equivalent, we ask 4 annotators (including
2 non-experts) to label 7, 5, and 3 objects per class for point-, line- and polygon-level
annotations in each aerial image. As a consequence, sparse but accurate annotations can
be provided rapidly without effort. Since a point- or line-level annotation is often located
in the centre area of an object and distant from its boundary, we perform morphological
dilation on all point- and line-level annotations with a disk of radius 3. Afterwards,
pixels involved in dilated annotations are assigned the same class labels as their central
points or lines. For polygon-level annotations, pixels within each polygon are assigned
the corresponding classes. As to the labeling time, it took on average 133, 126, and 161
seconds per image to produce point-, line- and polygon-level annotations, respectively, for
the Vaihingen dataset, and 177, 162, and 238 seconds per image for the Zurich Summer
dataset.

Feature and Spatial Relational Regularization. When using sparse annotations,
the vast majority of pixels in the training images are left unlabelled. In order to exploit
both labeled and unlabeled pixels, we develop a semi-supervised methodology, named FEa-
ture and Spatial relaTional regulArization (FESTA), to enable a semantic segmentation
CNN to learn discriminative features, while leveraging the unlabelled image pixels. An
assumption shared by many unsupervised learning algorithms [229] is that nearby entities
often belong to the same class. Based on this assumption, a recent work [230] achieves
success in representation learning by encoding neighborhood-relations in the feature space.
Inspired by this work, we propose to encode and regularize relations between pixels in both
feature and spatial domain, as shown in Fig. 5.20, so that the learned features become
more useful for semantic segmentation.
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Figure 5.20: Illustration of the proposed FESTA. A Sample x; belonging to building (filled with
black) is taken as an example.

Specifically, given a sample x; (i.e., a CNN feature vector extracted from location i in
an image), we first encode its relations to all other samples by measuring the distance in
space and feature similarity with respect to all other features in the image. The sample
with the smallest similarity is considered as the far-away sample in the feature space, x;,,
while that with the highest similarity is defined as the neighboring sample in feature space,
x;,,. According to the aforementioned proximity assumption, it is highly probable that
z; and x;,, belong to the same class, and thus, the distance between them should be as
small as possible. In order to prevent a trivial solution in which all features collapse to the
same point, x; and x;,, are encouraged to further increase their dissimilarity. We apply a
similar reasoning in the spatial domain, since images are smooth in spatial terms. Thus,
we take the 8 spatial neighbors of x; into consideration and chose the one most similar in
feature space as the spatial neighbor, x;, . This operation is intended to prevent pairing
x; with a spatial neighbor that belongs to the object boundary.

These priors can be incorporated into the learning objectives by using the following loss
function:

N N
Lrgsra= Y Dxizi,)+8Y Dxiw,)
i=1 i=1
. (5.20)
+ Z S(mu ﬂliff>,
i=1

where D denotes the euclidean distance and S represents cosine similarity. «, 8, and
~ are trade-off parameters representing the significances of the respective terms, and N
represents the number of pixels in a given image. By minimizing LrgsTa, ®i, P and x;,
are forced to move closer to x;, while x;,, is pushed far from x;. In order to jointly
exploit the sparse scribbled annotations and FESTA for the network training, the final
loss is defined as:

L=2Lc+ ANCFESTA, (5.21)

where L. indicates the categorical cross-entropy loss calculated from pixels with anno-
tations. Furthermore, the predictions of networks trained on scribbled annotations are
refined by a fully connected CRF.
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Table 5.5: Numerical results on the Vaihingen dataset (%): We show the per-class F; score, mean
F score, and overall accuracy on the test set. Mean is calculated from results on sparse
annotations produced by 4 annotators. Results on dense annotations are provided as

reference.

Scribble Model ‘ Imp. surf. Build. Low veg. Tree Car ‘ mean Fi OA
FCN-WL [231] 69.81 75.02 60.25 76.17 12.29 58.71 67.11

Point FCN-+dCRF [197] 75.37 81.37 61.93 78.50 17.51 62.94 72.53
FCN-FESTA 74.65 78.64 60.24 76.15 23.65 62.66 71.43
FCN-FESTA+dCRF 77.62 80.08 60.78 76.70  31.40 65.32 73.65

FCN-WL [231] 78.44 83.45 64.02 79.32 29.01 66.85 76.12
Line FCN+dCRF [197] 81.32 84.88 63.71 79.88  38.95 69.75 78.03
FCN-FESTA 78.12 83.76 65.78 80.49 38.24 69.28 77.24
FCN-FESTA+dCRF 80.06 84.47 64.35 80.32 43.72 70.58 77.99

FCN-WL [231] 76.71 80.03 59.40 78.50 26.28 64.19 74.18

Polygon FCN+dCRF [197] 78.37 80.85 57.92 78.67  29.13 64.99 75.15
FCN-FESTA 78.98 83.10 62.59 79.91 33.04 67.52 76.65
FCN-FESTA+dCRF 80.62 83.62 60.79 79.81 40.27 69.02 77.32

Dense FCN [26] 88.67 92.83 76.32 74.21 86.67 83.74 86.51

5.5.3 Results

We compare a FCN [26] learned using the proposed FESTA (FCN-FESTA) against an
FCN learned with weighted loss function (FCN-WL) [231] on sparse annotations. We also
report segmentation results of the baseline FCN trained on dense labels. In addition, we
study the influence of the fully connected CRF by comparing FCN-FESTA+dCRF and
FCN+dCRF [197]. Each model is trained and validated on sparse annotations indepen-
dently. Per-class Fj scores, mean F} scores, and overall accuracy (OA) are calculated on
test images with dense annotations. Considering that each model is learned on labels from
four annotators, respectively, we average metrics obtained by each annotator.

Table 5.5 exhibits numerical results on the Vaihingen dataset. FCN-FESTA+dCRF
achieves the highest mean Fj scores in training with all kinds of scribbled annotations,
which demonstrates its effectiveness. To be more specific, with point- and polygon-level
supervision, FCN-FESTA improves the mean F; score by 3.95% and 3.33% compared
to FCN-WL, respectively. By refining predictions with dense CRF, FCN-FESTA+dCRF
achieves improvements of 2.38% and 4.03% in comparison with FCN+dCRF. It is inter-
esting to observe that line-level scribbles improve the segmentation performance the most,
and FCN-FAST+dCRF learned with such annotations obtains the highest mean F} score,
70.58%. Moreover, we note that FESTA can enhance the network capability of recognizing
small objects, i.e., car, in high resolution aerial images.

The proposed framework is also vaildated on the Zurich Summer dataset. For more
experimental results and analysis, please refer to Appendix E.
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6 Conclusion and Outlook

6.1 Summary

This dissertation explores deep learning for aerial scene understanding in high resolution
remote sensing imagery from the lab to the wild. In this dissertation, we decompose this
topic into three specific scene understanding tasks, i.e., aerial scene recognition, multi-label
object classification, and semantic segmentation of aerial imagery, and comprehensively
analyze their differences in terms of experimental prerequisites. Aiming to present a com-
prehensive view of aerial scene understanding using deep learning, a thorough literature
review is conducted for each task in both laboratory and real-world experimental circum-
stances. As to the contributions of this dissertation, we reach the four research objectives
proposed in Chapter 1 with the following works that are published in five peer-reviewed
journals. Specifically,

e to understand aerial scenes from a fine-grained object perspective, we
propose two multi-label object classification networks, i.e., CA-Conv-BiLSTM and
AL-RN-CNN, which encodes label correlations for the final prediction. The former
is composed of three indispensable elements: a feature extraction module, a class
attention learning layer, and a bidirectional LSTM-based sub-network, and its fun-
damental component is the bidirectional LSTM-based sub-network that can model
underlying class dependency in both directions. The latter comprises a label-wise
feature parcel learning module, an attentional region extraction module, and a label
relational inference module. To be more specific, the label-wise feature parcel learn-
ing module is designed to learn high-level feature parcels, and the attentional region
extraction module further generates finer attentional feature parcels by preserving
only features located in discriminative regions. Afterward, the label relational in-
ference module reasons about pairwise relations among all labels and exploit these
relations for the final prediction. Besides, two multi-label aerial image datasets are
proposed for training and evaluating multi-label object classification networks, and
experiments on various datasets demonstrate the effectiveness of our networks.

e to bridge gaps between aerial scene recognition in the lab and wild, a
novel multi-scene recognition network, namely PM-Net, is proposed to tackle both
the problem of aerial scene classification in the wild and scarce training samples.
To be more specific, PM-Net consists of three key elements: a prototype learning
module for encoding prototype representations of variant aerial scenes, a prototype-
inhabiting external memory for storing high-level scene prototypes, and a multi-head
attention-based memory retrieval module for retrieving associated scene prototypes
from the external memory for recognizing multiple scenes in a query aerial image.
With this design, PM-Net can learn to predict aerial scenes in the wild by using only a
small number of labeled multi-scene images and a huge amount of existing, annotated
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single-scene data. Both visual and quantitative results show its performance in aerial
scene recognition in the wild.

e to tackle the problem of data efficiency in multi-scene recognition, we pro-
pose a large-scale dataset, MultiScene, for multi-scene recognition in single images,
which is featured by unconstrained multi-scene aerial images and the available both
crowdsourced and clean labels. The proposed dataset allows studies in not only rec-
ognizing aerial scenes in the wild but also learning from noisy crowdsourced labels.
We comprehensively evaluate popular baseline models on both MultiScene-Clean (a
subset consisting of only cleanly labeled images) and MultiScene datasets. Experi-
mental results on the former demonstrate that unconstrained multi-scene recognition
is still a challenging task, and those on the latter showcase the great potential of
exploiting a large number of crowdsourced annotations.

e to facilitate learning aerial scene parsing models with sparse annotations,
we propose a framework for semantic segmentation of aerial imagery using sparse
annotations. In this framework, annotators only need to label several pixels with
easy-to-draw scribbles. To exploit these sparse scribbled annotations, we propose the
FEature and Spatial relaTional regulArization (FESTA) method to complement the
supervised task with an unsupervised learning signal that accounts for neighborhood
structures both in spatial and feature terms.

6.2 Outlook

Deep learning for aerial scene understanding in the laboratory circumstance has been ob-
taining outstanding achievements during the past few years. In aerial scene recognition,
we can see that deep neural networks researches can already reach nearly 100% classifica-
tion accuracy on some small-scale datasets [34, 46], and over 80% on datasets comprising
hundreds of thousands of aerial images [180]. However, there are very few efforts deployed
in the field of aerial scene recognition in the wild, where images are unconstrained and
more in line with the real-world scenario. Furthermore, multi-scene aerial image datasets
required for network training are significantly arduous to produce, which hinders the de-
velopment of deep learning for multi-scene recognition. Hence looking into the future,
large-scale datasets, where images are captured with no constraints and assigned multiple
scene labels, are in an urgent need for the remote sensing community. Besides, to alleviate
such annotation burden, how to jointly leverage a large number of single-scene aerial image
datasets and limited annotated multi-scene images is also a promising research direction.
Specifically, although deep learning models are capable of automatically extracting dis-
criminative features after trained on massive annotated images, they might suffer from
poor generalization ability due to their enormous learnable parameters. Hence, feature
learning strategies that are learned from single-scene images may not perform as expected
on multi-scene images, which imposes significant challenges to learning domain-invariant
scene representations. Another direction is to train networks to identify multiple objects
and scenes simultaneously, as objects are fundamental components of scenes and invariant
to the completeness and distributions of scenes in an image. To do so, graph networks and
attention mechanisms showcase the great potential in modeling underlying relationships
for enhancing the network performance of recognizing aerial scenes in unconstrained aerial
images.
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6.2 Outlook

Semantic segmentation of aerial imagery is a longstanding problem and have attracted
numerous researches that are conducted under the laboratory circumstance. Albeit con-
siderable progress has been made, their performance can not be made the most of in the
real-world scenario owing to data insufficiency. This is even stern in applications that
are faced with unseen targets and require fast responses. Opportunities always arise from
challenges. The problem of insufficient training samples in the wild can be addressed from
the following perspectives:

e Enlarging pixel-wise annotated aerial image datasets by increasing the number of
high resolution aerial images and taking thematic classes into consideration. As
can be observed in existing datasets, their predefined categories are often based on
land cover and land use types and provide a primary object-level understanding of
aerial images. Thus, networks trained on them can only interpret what they see
on the earth but are not able to reason about thematic meanings. For example,
networks trained on ISPRS datasets can identify cars and impervious surfaces but
fail to perceive which pixel belongs to parking lots or roads that are essential in
urban management and traffic monitoring. Besides, expanding dataset scales is
beneficial for alleviating the overfitting problem in network training and improving
the generalization capability.

e Reasoning about pixel relations for constructing more discriminative embedding
spaces so that unknown pixels can be interpreted by propagating labels of a few
pixels. Recently, Transformer and its variants are popular in visual recognition
tasks due to its revolutionary performance of learning long-range relationships be-
tween entities and allowing strong information flow among them. Such capabili-
ties can as well benefit semantic segmentation with sparse and incomplete annota-
tions by learning a more compact and discriminative feature space. Nonetheless,
Transformer-based models are data hunger, which imposes a gargantuan challenge
to inventing parameter-efficient alternatives of self-attention mechanism. To tackle
the problem of limited training samples, unsupervised self-learning is introduced
to pre-train networks on large-scale upstream datasets before fine-tuning them on
downstream tasks.

e Learning more general feature representations from large-scale cross-domain and
cross-task datasets. For instance, even a car shows variant appearances in aerial and
natural images due to their different viewing perspectives (i.e., the nadir and side
view), humans can readily recognize them with high confidence. This is attributed
to the inherent capability of learning general and discriminative features by con-
tinuously observing the world. Recalling that the number of remote sensing image
datasets is huge, and these datasets are painless to access, continual learning can
showcase its potential in learning intrinsic feature representations for preceding tasks
having few labels. Moreover, in the computer vision community, there are large vol-
umes of high-quality pixel-wise annotations for visual recognition tasks, which may
further boost the learning efficiency.

The training of deep learning-based algorithms is heavily dependent on access to high-
quality annotated image data. The more and higher-quality annotations are available, the
better-performed networks can be learned. However, as life is always hard, either pixel-
wise or image-level annotations often suffer from deficiency, noise, and incompleteness.
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6 Conclusion and Outlook

With respect to the three problems, learning with few shots, noisy labels, and partial
labels is exceedingly challenging but practical in the real-world scenario. By integrat-
ing prior knowledge, such as properties and underlying correlations, and semi-supervised
learning schemes, deep learning algorithms are expected to perform well in more practical
applications.

Towards general Artificial Intelligence (AI) for aerial scene understanding, incorpo-
rating natural languages is necessary, as they contain rich semantic information. Re-
searches [232, 233] about word embedding demonstrate that words having relevant se-
mantics or frequently co-occurring are closer to each other in the word embedding space.
This phenomenon can also be observed in visual tasks that images assigned common scene
or object labels show high similarities in the feature space. Therefore, it is worthwhile to
exploit visual and linguistic cues for aerial scene understanding, as they deliver homoge-
neous information of the real world but in a complementary way.
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researches have been conducted over the past few years. Among these studies,
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the real world, an aerial image is often associated with multiple labels, e.g.,
multiple object-level labels in our case. Besides, a comprehensive picture of
present objects in a given high-resolution aerial image can provide a more
in-depth understanding of the studied region. For these reasons, aerial im-
age multi-label classification has been attracting increasing attention. How-
ever, one common limitation shared by existing methods in the community
is that the co-occurrence relationship of various classes, so-called class de-
pendency, is underexplored and leads to an inconsiderate decision. In this
paper, we propose a novel end-to-end network, namely class-wise attention-
based convolutional and bidirectional LSTM network (CA-Conv-BiLSTM),
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Figure 1: Example high resolution aerial images with their scene labels and multiple
object labels. Common label pairs are highlighted. (a) Free way: bare soil, car, grass,
pavement and tree. (b) Intersection: building, car, grass, pavement and tree. (c)
Parking lot: car and pavement.

extraction module is designed for extracting fine-grained semantic feature
maps, while the class attention learning layer aims at capturing discrimina-
tive class-specific features. As the most important part, the bidirectional
LSTM-based sub-network models the underlying class dependency in both
directions and produce structured multiple object labels. Experimental re-
sults on UCM multi-label dataset and DFC15 multi-label dataset validate
the effectiveness of our model quantitatively and qualitatively.

Keywords: Multi-label Classification, High-Resolution Aerial Image,
Convolutional Neural Network (CNN), Class Attention Learning,
Bidirectional Long Short-Term Memory (BiLSTM), Class Dependency.

1. Introduction

With the booming of remote sensing techniques in the recent years, a
huge volume of high resolution aerial imagery is now accessible and benefits
a wide range of real-world applications, such as urban mapping [1, 2, 3, 4],
ecological monitoring [5, 6], geomorphological analysis [7, 8, 9, 10], and traf-
fic management [11, 12, 13]. As a fundamental bridge between aerial images
and these applications, image classification, which aims at categorizing im-
ages into semantic classes, has obtained wide attention, and many researches
have been conducted recently [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. However,
most existing studies assume that each image belongs to only one label (e.g.,
scene-level labels in Fig. 1), while in reality, an image is usually associated



with multiple labels [24]. Furthermore, a comprehensive picture of objects
present in an aerial image is capable of offering a holistic understanding of
such image. With this intention, numerous researches, i.e., semantic seg-
mentation [25, 26, 27] and object detection [25, 28, 29, 30], have emerged
recently. Unfortunately, it is extremely labor- and time-consuming to ac-
quire ground truths for these studies (i.e., pixel-wise segmentation masks
and bounding-box-level annotations). Compared to these expensive labels,
image-level labels (cf. multiple object-level labels in Fig. 1) are at a fair low
cost and readily accessible. To this end, multi-label classification, aiming
at assigning an image with multiple object labels, is arising in both remote
sensing [31, 32, 33, 34] and computer vision communities [35, 36, 37]. In this
paper, we deploy our efforts in exploring an efficient multi-label classification
model.

1.1. The Challenges of Multi-label Classification

Benefited from the fast-growing remote sensing technology, large quanti-
ties of high-resolution aerial images are available and widely used in many
visual tasks. Along with such huge opportunities, challenges have come up
inevitably.

On one hand, it is difficult to extract high-level features from high-
resolution images. Considering its complex spatial structure, conventional
hand-crafted features, and mid-level semantic models [15, 38, 39, 40, 41] suf-
fer from the poor performance of capturing holistic semantic features, which
leads to an unsatisfactory classification ability.

On the other hand, underlying correlations between dependent labels
are required to be unearthed for an efficient prediction of multiple object
labels. E.g., the existence of ships infers to a high probable co-occurrence
of the sea, while the presence of buildings is almost always accompanied by
the coexistence of pavement. However, the recently proposed multi-label
classification methods [31, 32, 33, 34] assumed that classes are independent
and employed a set of binary classifiers [31] or a regression model [32, 33, 34]
to infer the existence of each class separately.

To summarize, a well-performed multi-label classification system requires
powerful capabilities of learning holistic feature representations and should
be capable of harnessing the implicit class dependency.



1.2. The Motivation of Our Work

As our survey of related work shows above, recent approaches make few
efforts to exploit the high-order class dependency, which constrains the per-
formance in multi-label classification. Besides, direct utilization of CNNs
pre-trained on natural image datasets [32, 33, 34] leads to a partial interpre-
tation of aerial images due to their diverse visual patterns. Moreover, most
state-of-the-art methods decompose multi-label classification into separate
stages, which cuts off their inter-correlations and makes end-to-end training
infeasible.

To tackle these problems, in this paper, we propose a novel end-to-end
network architecture, class attention-based convolutional and bidirectional
LSTM network (CA-Conv-BiLSTM), which integrates feature extraction and
high-order class dependency exploitation together for multi-label classifica-
tion. Contributions of our work to the literature are detailed as follows:

e We regard the multi-label classification of aerial images as a structured
output problem instead of a simple regression problem. In this manner,
labels are predicted in an ordered procedure, and the prediction of
each label is dependent on others. As a consequence, the implicit class
relevance is taken into consideration, and structured outputs are more
reasonable and closer to the real-world case as compared to regression
outputs.

e we propose an end-to-end trainable network architecture for multi-label
classification, which consists of a feature extraction module (e.g., a
modified network based on VGG-16), a class attention learning layer,
and a bidirectional LSTM-based sub-network. These components are
designed for extracting features from input images, learning discrimi-
native class-specific features, and exploiting class dependencies, respec-
tively. Besides, such a design makes it feasible to train the network in
an end-to-end fashion, which enhances the compactness of our model.

e Considering that class dependencies are diverse in both directions, a
bidirectional analysis is required for modeling such correlations. There-
fore, we employ a bidirectional LSTM-based network, instead of a one-
way recurrent neural network, to dig out class relationships.

e We build a new challenging dataset, DFC15 multi-label dataset, by
reproducing from a semantic segmentation dataset, GRSS_DFC_2015

4



(DFC15) [42]. The proposed dataset consists of aerial images at a
spatial resolution of 5 cm and can be used to evaluate the performance
of networks for multi-label classification.

The following sections further introduce and discuss our network. Specif-
ically, Section 2 provides an intuitive illustration of the class dependency
and then details the structure of the proposed network in terms of its three
fundamental components. Section 3 describes the setup of our experiments,
and experimental results are discussed from quantitative and qualitative per-
spectives. Finally, the conclusion of this paper is drawn in Section 4.

2. Methodology
2.1. An Observation

Current aerial image multi-label classification methods [32, 33, 34] con-
sider such problem as a regression issue, where models are trained to fit a
binary sequence, and each digit indicates the existence of its corresponding
class. Unlike one-hot vectors, a binary sequence is allowed to contain more
than one 'hot’ value for indicating the joint existence of multiple candidate
classes in one image. Besides, several researches [31] formulate multi-label
classification into several single-label classification tasks, and thus, train a set
of binary classifiers for each class. Notably, one common assumption of these
studies is that classes are independent of each other, and classifiers predict
the existence of each category independently. However, this is violent and
not accord with real life. As illustrated in Fig. 1, although images obtained
in diverse scenes are assigned with multiple different labels, there are still
common classes, e.g., car and pavement, coexisting in each image. This is
because, in the real-life world, some classes have a strong correlation, for
example, cars are often driven or parked on pavements. To further demon-
strate the class dependency, we calculate conditional probabilities for each
of the two categories. Let C, denote referenced class, and C), denote poten-
tial co-occurrence class. Conditional probability P(C,|C,), which depicts the
possibility that C), exhibits in an image, where the existence of C, is priorly
known, can be solved with Eq. 1,

P<CP’CT> = (1>
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Figure 2: The co-occurrence matrix of labels in UCM multi-label dataset. Notably, all
images are taken into consideration when calculating this matrix. Labels at Y-axis repre-
sent referenced classes C, , while labels at X-axis are potential co-occurrence classes Cp,.
The conditional probability P(C,|C,) of each class pair is presented in the corresponding
block.

P(C,,C,) indicates the joint occurrence probability of C, and C,, and
P(C,) refers to the priori probability of C,.. Conditional probabilities of all
class pairs in UCM multi-label datasets are listed in Fig. 2, and it is intuitive
that some classes have strong dependencies. For instance, it is highly possible
that there are pavements in images, which contain airplanes, buildings, cars,
or tanks. Moreover, it is notable that class dependencies are not symmetric
due to their particular properties. For example, P(water|ship) is twice as
P(shiplwater) due to the reason that the occurrence of ships always infer to
the co-occurrence of water, while not vice versa. Therefore, to thoroughly
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Figure 3: The architecture of the proposed CA-Conv-BiLSTM for the multi-label classifi-
cation of aerial images.

dig out the correlation among various classes, it is crucial to model class
probabilistic dependencies bidirectionally in a classification method.

To this end, we boil the multi-label classification down into a structured
output problem, instead of a simple regression issue, and employ a unified
framework of a CNN and a bidirectional RNN to 1) extract semantic features
from raw images and 2) model image-label relations as well as bidirectional
class dependencies, respectively.

2.2. Network Architecture

The proposed CA-Conv-BiLSTM, as illustrated in Fig. 3, is composed
of three components: a feature extraction module, a class attention learning
layer, and a Bidirectional LSTM-based recurrent sub-network. More specifi-
cally, the feature extraction module employs a stack of interleaved convolu-
tional and pooling layers to extract high-level features, which are then fed
into a class attention learning layer to produce discriminative class-specific
features. Afterwards, a bidirectional LSTM-based recurrent sub-network is
attached to model both probabilistic class dependencies and underlying re-
lationships between image features and labels.

Section 2.2.1 details the architecture of the feature extraction module,
and Section 2.2.2 describes the explicit design of the class attention learning
layer. Finally, Section 2.2.3 introduces how to produce structured multi-label
outputs from class-specific features via a bidirectional LSTM-based recurrent
sub-network.



2.2.1. Dense High-level Feature FExtraction

Learning efficient feature representations of input images is extremely cru-
cial for the image classification task. To this end, a modern popular trend
is to employ a CNN architecture to automatically extract discriminative fea-
tures, and many recent studies [43, 11, 16, 44, 17, 23| have achieved great
progress in a wide range of classification tasks. Inspired by this, our model
adapts VGG-16 [45], one of the most welcoming CNN architectures for its
effectiveness and elegance, to extract high-level features for our task.

Specifically, the feature extraction module consists of 5 convolutional
blocks, and each of them contains 2 or 3 convolutional layers (as illustrated in
the left of Fig. 3). Notably, the number of filters is equivalent in a common
convolutional block and doubles after each pooling layer, which is utilized to
reduce the spatial dimension of feature maps. The purpose of such design
is to enable the feature extraction module to learn diverse features at a less
computational expense. The receptive field of all convolutional filters is 3 x 3,
which increases nonlinearities inside the feature extraction module. Besides,
the convolution stride is 1 pixel, and the spatial padding of each convolutional
layer is set as 1 pixel as well. Among these convolutional blocks, max-pooling
layers are interleaved for reducing the size of feature maps and meanwhile,
maintaining only local representative, such as maximum in a 2 x 2-pixel re-
gion. The size of pooling windows is 2 x 2 pixels, and the pooling stride is 2
pixels, which halves feature maps in width and length.

Features directly learned from a conventional CNN (e.g., VGG-16) are
proved to be high-level and semantic, but their spatial resolution is signifi-
cantly reduced, which is not favorable for generating high-dimensional class-
specific features in the subsequent class attention learning layer. To address
this, max-pooling layers following the last two convolutional blocks are dis-
carded in our model, and atrous convolutional filters with dilation rate 2
are employed in the last convolutional block for preserving original receptive
fields. Consequently, our feature extraction module is capable of learning
high-level features with finer spatial resolution, so-called “dense”, compared
to VGG-16, and it is feasible to initialize our model with pre-trained VGG-16,
considering that all filters have equivalent receptive fields.

Moreover, it is noteworthy that other popular CNN architectures can be
taken as prototypes of the feature extraction module, and thus, we extend
researches to GoogLeNet [46] and ResNet [47] for a comprehensive evalu-
ation of CA-Conv-BiLSTM. Regarding GoogLeNet, i.e., Inception-v3 [48],



the stride of convolutional and pooling layers after “mized7” is reduced to
1 pixel, and the dilation rate of convolutional filters in “mized9” is 2. For
ResNet (we use ResNet-50), the convolution stride in last two residual blocks
is set as 1 pixel, and the dilation rate of filters in the last residual block is
2. Besides, layers after global average pooling layers, as well as itself, are
removed to ensure dense high-level feature maps.

2.2.2. Class Attention Learning Layer

Although Features extracted from pre-trained CNNs are high-level and
can be directly fed into a fully connected layer for generating multi-label
predictions, it is infeasible to learn high-order probabilistic dependencies by
recurrently feeding it with identical features. Therefore, extracting discrim-
inative class-wise features plays a key role in discovering class dependencies
and effectively bridging CNN and RNN for multi-label classification tasks.

Here, we propose a class attention learning layer to explore features with
respect to each category, and the proposed layer, illustrated in the middle
of Fig. 3, consists of the following two stages: 1) generating class attention
maps via a 1 x 1 convolutional layer with stride 1, and 2) vectorizing each class
attention map to obtain class-specific features. Formally, given feature maps
X, extracted from the feature extraction module, with a size of W x W x K,
and let w; represent the [-th convolutional filter in the class attention learning
layer. The attention map M, for class [ can be obtained with the following
formula:

Ml =X x wy, (2)

where [ ranges from 1 to the number of classes, and * represents convolution
operation. Considering that the size of convolutional filters is 1 x 1, a class
attention map M, is intrinsically a linear combination of all channels in X.
With this design, the proposed class attention learning layer is capable of
learning discriminative class attention maps. Some examples are shown in
Fig. 4. An aerial image (cf. Fig. 4a) in UCM multi-label dataset is first
fed into the feature extraction module, adapted from VGG-16, and outputs
of its last convolutional block are considered as the feature maps X in Eq.
2. Thus, X is abundant in high-level semantic information, and the size
of X is 14 x 14 x 512. Afterwards, a class attention learning layer, where
the number of filters is equivalent to that of classes, is appended to generate
class-specific feature representations with respect to all categories. With
sufficient training, they are supposed to learn class-wise attention maps. It is



Figure 4: Example class attention maps of an a) aerial image, with respect to different
classes: b) bare soil, ¢) building, and d) water.

observed that class attention maps highlight discriminative areas for different
categories and exhibit almost no activations with respect to absent classes
(as shown in Fig. 4c).

Subsequently, class attention maps M, are transformed into class-wise
feature vectors v; of W?2 dimensions by vectorization. Instead of fully con-
necting class attention maps to each hidden unit in the following layer, we
construct class-wise connections between class attention maps and their cor-
responding hidden units, i.e., corresponding time steps in an LSTM layer in
our network. In this way, features fed into different units are retained to be
class-specific discriminative and significantly contribute to the exploitation
of the dynamic class dependency in the subsequent bidirectional LSTM layer.

2.2.3. Class Dependency Learning via a BiLSTM-based Sub-network

As an important branch of neural networks, RNN is widely used in deal-
ing with sequential data, e.g., textual data and temporal series, due to its
strong capabilities of exploiting implicit dependencies among inputs. Unlike
CNN, RNN is characterized by its recurrent neurons, of which activations
are dependent on both current inputs and previous hidden states. However,
conventional RNNs suffer from the gradient vanishing problem and are found
difficult to learn long-term dependencies. Therefore, in this work, we seek
to model class dependencies with an LSTM-based RNN, which is first pro-
posed in [49] and has shown great performance in processing long sequences
[50, 51, 52, 53, 54].

Instead of directly summing up inputs as in a conventional recurrent
layer, an LSTM layer relies on specifically designed hidden units, LSTM
units, where information, such as the class dependency between category [
and [ — 1, is “memorized”, updated, and transmitted with a memory cell and
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Figure 5: Illustration of the bidirectional structure. The direction of the upper stream
is opposite to that of the lower stream. Notably, h]_;, ¢;_; denotes the activation and
memory cell in the upper stream at the time step, which corresponds to class [ — 1 for
convenience (considering that the subsequent time step is usually denoted as [ 4 1).

several gates. Specifically, given a class-specific feature v; obtained from the
class attention learning layer as an input of the LSTM memory cell ¢; at time
step [, and let h; represent the activation of ¢;. New memory information ¢;,
learned from the previous activation h;_; and the present input feature v,
is obtained as follows:

¢, = tanh(W v, + Wy,hy_1 + b,), (3)

where W,, and W, denote weight matrix from input vectors to memory cell
and hidden-memory coefficient matrix, respectively, and b, is a bias term.
Besides, tanh(-) is the hyperbolic tangent function. In contrast to conven-
tional recurrent units, where the ¢; is directly used to update the current
state h;, an LSTM unit employs an input gate ¢; to control the extent to
which ¢; is added, and meanwhile, partially omits uncorrelated prior infor-
mation from ¢;_; with a forget gate f;. The two gates are performed by the
following equations:

4 =o(Wyvy+ Wihi_y + Wieei-1 + by),
4
fi=oc(Wyrv + Wehiy + Wieei—1 + by). )

Consequently, the memory cell ¢; is updated by
a=1u0¢+ fi®c, (5)
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where ® represents element-wise multiplication. Afterwards, an output gate
o;, formulated by

o] = O'(Wm;’vl -+ Wahhl—l + Woccl + bo)a (6)

is designed to determine the proportion of memory content to be exposed,
and eventually, the memory cell ¢; at time step [ is activated by

hl = Oy tanh(cl). (7)

Although it is not difficult to discover that the activation of the memory
cell at each time step is dependent on both input class-specific feature vectors
and previous cell states. However, taking into account that the class depen-
dency is bidirectional, as demonstrated in Section 2.1, a single-directional
LSTM-based RNN is insufficient to draw a comprehensive picture of inter-
class relevance. Therefore, a bidirectional LSTM-based RNN, composed of
two identical recurrent streams but with reversed directions, is introduced in
our model, and the hidden units are updated based on signals from not only
their preceding states but also subsequent ones.

In order to practically adapt a bidirectional LSTM-based RNN to model-
ing the class dependency, we set the number of time steps in our bidirectional
LSTM-based sub-network equivalent to that of classes under the assumption
that distinct classes are predicted at respective time steps. Validated in Sec-
tion 3.3 and 3.4, such design enjoys two outstanding characteristics: on one
hand, the LSTM memory cell at time step [, ¢;, focuses on learning dependent
relationship between class [ and others in dual directions (cf. Fig. 5), and
on the other hand, the occurrence probability of class [, P, can be predicted
from outputs [hy, hj] with a single-unit fully connected layer:

b, = o(wi[hy, k] + by), (8)

where h; denotes the activation of ¢; in the other direction, and o is used as
the activation function.

3. Experiments and Discussion

In this section, two high-resolution aerial datasets of different resolution
used for evaluating our network are first described in Section 3.1, and then,
the training strategies are introduced in Section 3.2. Afterwards, the per-
formance of the proposed network on the two datasets is quantitatively and
qualitatively evaluated in the following sections.
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Figure 6: Example images from each scene category and their corresponding multiple
object labels in UCM multi-label dataset. Each image is 256 x 256 pixels with a spatial
resolution of one foot, and their scene and object labels are introduced: (a) Agricultural:
field and tree. (b) Airplane: airplane, bare soil, car, grass and pavement. (c) Baseball
diamond: bare soil, building, grass, and pavement. (d) Beach: sand and sea. (e) building:
building, car, and pavement. (f) Chaparral: bare soil and chaparral. (g) Dense residential:
building, car, grass, pavement, and tree. (h) Forest: building, grass, and tree. (i) Free
way: bare soil, car, grass, pavement, and tree. (j) Golf course: grass, pavement, sand, and
tree. (k) Harbor: dock, ship, and water. (1) Intersection: building, car, grass, pavement,
and tree. (m) Medium residential: building, car, grass, pavement, and tree. (n) Mobile
home park: bare soil, car, grass, mobile home, pavement, and tree. (o) Overpass: bare
soil, car, and pavement. (p) Parking lot: car, grass, and pavement. (q) River: grass, tree,
and water. (r) Runway: grass and pavement. (s) Sparse residential: bare soil, building,
car, grass, pavement, and tree. (t) Storage tank: bare soil, pavement, and tank. (u) Tennis
court: bare soil, court, grass, and tree.

3.1. Data description

3.1.1. UCM Multi-label Dataset

UCM multi-label dataset [55] is reproduced from UCM dataset [15] by
reassigning them with multiple object labels. Specifically, UCM dataset con-
sists of 2100 aerial images of 256 x 256 pixels, and each of them is categorized
into one of 21 scene labels: airplane, beach, agricultural, baseball diamond,
building, tennis courts, dense residential, forest, freeway, golf course, mobile
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home park, harbor, intersection, storage tank, medium residential, overpass,
sparse residential, parking lot, river, runway, and chaparral. For each of
them, there are 100 images with a spatial resolution of one foot collected by
cropping manually from aerial ortho imagery provided by the United States
Geological Survey (USGS) National Map.

In contrast, images in UCM multi-label dataset are relabeled by assigning
each image sample with one or more labels based on their primitive objects.
The total number of newly defined object classes is 17: airplane, sand, pave-
ment, building, car, chaparral, court, tree, dock, tank, water, grass, mobile
home, ship, bare soil, sea, and field. It is notable that several labels, namely,
airplane, building, and tank, are defined in both datasets but with variant
level. In UCM dataset, they are scene-level labels, since they are predomi-
nant objects in an image and used to depict the whole image, while in UCM
multi-label dataset, they are object-level labels, regarded as candidate ob-
jects in a scene. The numbers of images related to each object category are
listed in Table 1, and examples from each scene category are shown in Fig.
6, as well as their corresponding object labels. To train and test our network
on UCM multi-label dataset, we select 80% of sample images evenly from
each scene category for training and the rest as the test set.

3.1.2. DFC15 Multi-label Dataset

Considering that images collected from the same scene may share simi-
lar patterns, alleviating task challenges, we build a new multi-label dataset,
DFC15 multi-label dataset, based on a semantic segmentation dataset, DFC15
[42], which was published and first used in 2015 IEEE GRSS Data Fusion
Contest. DFC15 dataset is acquired over Zeebrugge with an airborne sensor,
which is 300m off the ground. In total, 7 tiles are collected in DFC dataset,
and each of them is 10000 x 10000 pixels with a spatial resolution of 5 cm.
Unlike UCM dataset, where images are assigned with image-level labels, all
tiles in DFC15 dataset are labeled in pixel-level, and each pixel is categorized
into 8 distinct object classes: impervious, water, clutter, vegetation, build-
ing, tree, boat, and car. Notably, vegetation refers to low vegetation, such
as bushes and grasses, and has no overlap with trees. Impervious indicates
impervious surfaces (e.g., roads) excluding building rooftops.

Considering our task, the following processes are conducted: First, we
crop large tiles into images of 600 x 600 pixels with a 200-pixel-stride slid-
ing window. Afterwards, images containing unclassified pixels are ignored,
and labels of all pixels in each image are aggregated into image-level multi-
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Table 1: The Number of Images in Each Object Class

Class No. | Class Name Total Training Test

1 airplane 100 80 20
2 bare soil 718 577 141
3 building 691 555 136
4 car 886 722 164
5 chaparral 115 82 33
6 court 105 84 21
7 dock 100 80 20
8 field 104 79 25
9 grass 975 804 171
10 mobile home 102 82 20
11 pavement 1300 1047 253
12 sand 294 218 76
13 sea 100 80 20
14 ship 102 80 22
15 tank 100 80 20
16 tree 1009 801 208
17 water 203 161 42
- All 2100 1680 420

labels. An important characteristic of images in DFC15 multi-label dataset
is lower inter-image similarity due to that they are cropped from vast regions
consecutively without specific preferences, e.g., seeking images belonging to
a specific scene. Moreover, extremely high resolution makes it more chal-
lenging as compared to UCM multi-label dataset. The numbers of images
containing each object label are listed in Table 2, and example images with
their image-level object labels are shown in Fig. 7. To conduct the eval-
uation, 80% of images are randomly selected as the training set, while the
others are utilized to test our network.

3.2. Training details

The proposed CA-Conv-BiLSTM is initialized with separate strategies
with respect to three dominant components: 1) the feature extraction mod-
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Figure 7: Example images in DFC15 multi-label dataset and their multiple object labels.
Each image is 600 x 600 pixels with a spatial resolution of 5 cm. (a) Water and vegetation.
(b) Impervious, water, and car. (c) Impervious, water, vegetation, building, and car. (d)
Water, clutter, and boat. (e) Impervious, vegetation, building, and car. (f) Impervious,
vegetation, building, and car. (g) Impervious, vegetation, and tree. (h) Impervious,
vegetation, and building.

Table 2: The Number of Images in Each Object Class

Class No. | Class Name Total Training Test
1 impervious 3133 2532 602

2 water 998 759 239
3 clutter 1891 1801 90

4 vegetation 1086 022 562
5 building 1001 672 330
6 tree 258 35 223
7 boat 270 239 31

8 car 705 478 277
- All 3342 2674 668
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ule is initialized with CNNs pre-trained on ImageNet dataset [56], 2) convo-
lutional filters in the class attention learning layer is initialized with a Glorot
uniform initializer, and 3) all weights in the bidirectional 2048-d LSTM layer
are randomly initialized in the range of [—0.1,0.1] with a uniform distribu-
tion. Notably, weights in the feature extraction module are trainable and
fine-tuned during the training phase of our network.

Regarding the optimizer, we chose Adam with Nesterov momentum [57],
claimed to converge faster than stochastic gradient descent (SGD), and set
parameters of the optimizer as recommended: (; = 0.9, S5 = 0.999, and
€ = le — 08. The learning rate is set as le — 04 and decayed by 0.1 when
the validation accuracy is saturated. The loss of the network is defined as
the binary cross entropy. We implement the network on TensorFlow and
train it on one NVIDIA Tesla P100 16GB GPU for 100 epochs. The size
of the training batch is 32 as a trade-off between GPU memory capacity
and training speed. To avoid overfitting, we stop training procedure when
the loss fails to decrease in five epochs. Concerning ground truths, multiple
labels of an image are encoded into a multi-hot binary sequence, of which the
length is equivalent to the number of all candidate labels. For each digit, 1

indicates the existence of its corresponding label, while 0 denotes the absent
label.

3.83. Results on UCM Multi-label Dataset

3.3.1. Quantitative Results

To evaluate the performance of CA-Conv-BiLSTM for multi-label classi-
fication of high resolution aerial imagery, we calculate both Fj [58] and F,
[59] score as follows:

PeTe

Fy= (14 8-
b= 6)62pe+re

B=12, (9)
where p, is the example-based precision [60] of predicted multiple labels, and
r. indicates the example-based recall. They are computed by:

TP, TP,

= — e = T/, 1
TP.+FP' '° TP+ FN, (10)

Pe
where T'P,, F'P,, and F'N, indicate the numbers of positive labels, which are

predicted correctly (true positives) and incorrectly (false positives), and neg-
ative labels, which are incorrectly predicted (false negatives) in an example
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(i.e., an image with multiple object labels in our case), respectively. Then, the
average of Fy scores of each example is formed to assess the overall accuracy
of multi-label classification tasks. Besides, example-based mean precision as
well as mean recall are calculated to assess the performance from the per-
spective of examples, while label-based mean precision and mean recall can
help us understand the performance of the network from the perspective of
object labels:

TP, TP
= = ==""> >, (11)

TP + FP TP+ FN,

where TP, F'P,, and F'N; represent the numbers of correctly predicted posi-
tive images, incorrectly predicted positive images, and incorrectly predicted
negative images with respect to each label.

For a fair validation of CA-Conv-BiLSTM, we decompose the evalua-
tion into two components: we compare 1) CA-Conv-LSTM with standard
CNNs to validate the effectiveness of employing LSTM-based recurrent sub-
network, and 2) CA-Conv-BiLSTM with CA-Conv-LSTM for further assess
the significance of the bidirectional structure. The detailed configurations of
these competitors are listed in Table 3. For standard CNNs, we substitute
last softmax layers, which are designed for single-label classification, with sig-
moid layers to predict multi-hot binary sequences, where each digit indicates
the probability of the presence of its corresponding category. To calculate
evaluation metrics, we binarize outputs of all models with a threshold of 0.5
for producing binary sequences. Besides, our model is compared with a rele-
vant existing method [32] for a comprehensive evaluation of its performance.

b

Table 4 exhibits results on UCM multi-label dataset, and it can be seen
that compared to directly applying standard CNNs to multi-label classifi-
cation, CA-Conv-LSTM framework performs superiorly as expected due to
taking class dependencies into consideration. CA-VGG-LSTM increases the
mean F; score by 1.03% with respect to VGGNet, while for CA-ResNet-
LSTM, an increment of 1.68%, is obtained compared to ResNet. Mostly
enjoying this framework, CA-GooglLeNet-LSTM achieves the best mean Fj
score of 81.78% and an increment of 1.10% in comparison with other CA-
Conv-LSTM models and GoogLeNet, respectively. Moreover, CA-ResNet-
LSTM shows an improvement of 3.08% of the mean Fj score in compari-
son with ResNet, while CA-GoogLeNet-LSTM obtains the best F, score of
85.16%. To summarize, all comparisons demonstrate that instead of directly
using a standard CNN as a regression task, exploiting class dependencies
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Table 3: Configurations of CA-Conv-LSTM Architectures

Model CNN model Class Attention Map Bi.
CA-VGG-LSTM VGG-16 28 x 28 x N X
CA-VGG-BiLSTM VGG-16 28 x 28 x N v
CA-GoogLeNet-LSTM Inception-v3 17x17x N X
CA-GoogLeNet-BiLSTM Inception-v3 17x 17 x N v
CA-ResNet-LSTM ResNet-50 28 X 28 X N X
CA-ResNet-BiLSTM ResNet-50 28 x 28 x N v

N indicates the number of classes in the dataset.
Bi. indicates whether the model is bidirectional or not.

plays a key role in multi-label classification.

Concerning the signification of employing a bidirectional structure, CA-
Conv-BiLSTM performs better than CA-Conv-LSTM in the mean F} score,
and compared to Conv-RBFNN, our models achieve higher mean F; and
Fy scores, increased by at most 0.98% and 2.80%, respectively. Another
important observation is that our proposed model is equipped with higher
example-based recall but lower example-based precision, which leads to a
relatively higher mean F, score. Notably, the F; score is an evaluation index
used in Kaggle Amazon contest [59] to assess the performance of recogniz-
ing challenging rare objects in aerial images, and a higher score indicates a
stronger capability. Table 5 exhibits several example predictions in UCM
multi-label dataset. Although our model successfully predicts most multiple
object labels, it is observed that the grass and tree are prone to be misclas-
sified due to their analogous appearances. In the 4th image, the grass is a
false positive when there exist trees, while in the 5th image, the tree is a false
positive when the grass presents. Likewise, the bare soil in the 5th image is
neglected unfortunately for its similar visual patterns with the grass.

3.3.2. Qualitative Results

In addition to validate classification capabilities of the network by com-
puting the mean F5 score, we further explore the effectiveness of class-specific
features learned from the proposed class attention learning layer and try
to“open” the black box of our network by feature visualization. Example
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Table 4: Quantitative Results on UCM Multi-label Dataset (%)

Model mf; mF, mP, mR., mP, mR
VGGNet [45] 78.54 80.17 79.06 82.30 86.02 80.21
VGG-RBFNN [32] 78.80 81.14 78.18 83.91 81.90 82.63
CA-VGG-LSTM 79.57  80.75 80.64 82.47 87.74 75.95
CA-VGG-BiLSTM 79.78 81.69 79.33 83.99 85.28 76.52
GoogLeNet [46] 80.68 82.32 80.51 84.27 87.51 80.85

GoogLeNet-RBFNN [32] 81.54 84.05 79.95 86.75 86.19 84.92
CA-GoogLeNet-LSTM 81.78 85.16 78.52 88.60 86.66 85.99
CA-GoogLeNet-BiLSTM 81.82 84.41 7991 87.06 86.29 84.38

ResNet-50 [47] 79.68 80.58 80.86 81.95 88.78 T78.98
ResNet-RBFNN [32] 80.58  82.47 79.92 84.59 86.21 83.72
CA-ResNet-LSTM 81.36 83.66 79.90 86.14 86.99 82.24

CA-ResNet-BiLSTM 81.47 85.27 7794 89.02 86.12 84.26

m.F; and m.F; indicate the mean F} and F5 score.
m.P, and m.R, indicate mean example-based precision and recall.
m.P; and m.R; indicate mean label-based precision and recall.

class attention maps produced by the proposed network on UCM multi-label
dataset are shown in Fig. 8, where column (a) is original images, and columns
(b)-(i) are class attention maps for different objects: (b) bare soil, (¢) build-
ing, (d) car, (e) court, (f) grass, (g) pavement, (h) tree, and (i) water. As
we can see, these maps highlight discriminative regions for positive classes,
while present almost no activations when corresponding objects are absent
in original images. For example, object labels of the image at the first row
in Fig. 8 are building, grass, pavement, and tree, and its class attention
maps for these categories are strongly activated. From images at the fourth
row of Fig. 8, it can be seen that regions of the grassland, forest, and river
are highlighted in their corresponding class attention maps, leading to pos-
itive predictions, while no discriminative areas are intensively activated in
the other maps.
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Table 5: Example Predictions on UCM and DFC15 Multi-label Dataset

Images in UCM
Multi-label
Dataset

Ground Truths

dock, ship, and
water

building, car,
pavement, and
tree

building, court,
pavement,
grass, and tree

car, pavement,
mobile-home,
and tree

bare soil, car,
grass, and
pavement

dock, ship, and

building, car, building, court,

car, pavement, bare soil, car,

Predictions water pavement, and pavement, mobile-home, grass, tree, and
tree grass, and tree tree and grass pavement
Images in
DFC15 ‘
Multi-label x
Dataset .

. . . . impervious, impervious,
impervious, impervious, . .
. vegetation, water, vegetation,
Ground Truths water, and vegetation, car, o . 1
building and building building, vegetation, tree  building, car,
clutter, and car and tree
. . . . impervious, . . impervious,
impervious, impervious, . impervious, .
_— . vegetation, vegetation,
Predictions water, and vegetation, car, 1 water, tree, e
building and building building, vegetation building, car,
clutter, and car and tree

Red predictions indicate false positives, while blue predictions are false negatives.
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(1)

(d)

Figure 8: Example class attention maps of (a) images in UCM multi-label dataset with
respect to (b) bare soil, (c) building, (d) car, (e) court, (f) grass, (g) pavement, (h) tree,
and (i) water. Red indicates strong activations, while blue represents non-activations.
Besides, normalization is performed based on each row for a fair comparison among class
attention maps of the same images.

3.4. Results on DFC15 Multi-label Dataset

3.4.1. Quantitative Results

Following the evaluation on UCM multi-label dataset, we assess our net-
work on DFC15 multi-label dataset by calculating the mean F; and F5 score
as well as mean example- and label-based precision and recall. Table 6 shows
experimental results on this dataset, and the conclusion can be drawn that
modeling class dependencies with a bidirectional structure contributes signif-
icantly to multi-label classification. Specifically, the mean F score achieved
by CA-ResNet-BiLSTM is 4.87% and 5.55% higher than CA-ResNet-LSTM
and ResNet, respectively. CA-VGG-BILSTM obtains the best mean Fj score
of 76.25% in comparison with VGGNet and CA-VGG-LSTM, and the mean
F} score of CA-GoogLeNet-BiLSTM is 78.25%, higher than its competitors.
In comparison with Conv-RBFNN, CA-Conv-BiLSTM exhibits an improve-
ment of at most 5.29% and 4.18% in terms of the mean F; and F5 score,
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Table 6: Quantitative Results on DFC15 Multi-label Dataset (%)

Model mf; mF, mP, mR., mP, mR
VGGNet [45] 73.86 74.09 76.16 74.95 62.57 59.95
VGGNet-RBFNN [32] 72.21  73.02 74.08 7442 60.82 66.58
CA-VGG-LSTM 75.46  75.85 T77.95 76.95 73.56 59.19
CA-VGG-BiLSTM 76.25 76.93 7827 7830 7499 64.31
GoogLeNet [46] 74.99 7341 81.01 73.01 71.80 53.95

GoogLeNet-RBFNN [32] 73.38 72.62 7846 7294 64.62 63.22
CA-GoogLeNet-LSTM 75.67 7546 79.08 76.12 70.22 60.65
CA-GoogLeNet-BiLSTM 78.25 76.80 83.97 76.52 82.98 61.04

ResNet-50 [47] 78.10 76.21 84.89 75.64 81.50 59.99
ResNet-RBFNN [32] 78.36 78.08 82.64 78.76 72.01 69.85
CA-ResNet-LSTM 78.78 76.65 85.66 75.84 83.83 60.05

CA-ResNet-BiLSTM 83.65 80.61 91.93 79.12 94.35 62.35

respectively. To conclude, all these increments demonstrate the effectiveness
and robustness of our bidirectional structure for high-resolution aerial image
multi-label classification. Several example predictions in DFC15 multi-label
dataset are shown in Table 5. The last two examples of DFC15 multi-label
dataset show that trees are false negatives with the occurrence of vegeta-
tions due to their similar appearances. Moreover, we note the best result
[61] in 2015 IEEE GRSS Data Fusion Contest achieves 71.18% in the mean
F'1 score, which is reduced by 12.47% with respect to our best result. This is
because predicting dense pixel-level labels is challenging in comparison with
classifying multiple image-level labels.

3.4.2. Qualitative Results

To study the effectiveness of class-specific features, we visualize class at-
tention maps learned from the proposed class attention learning layer, as
shown in Fig. 9. Columns (b)-(i) are example class attention maps with
respect to (b) impervious, (c¢) water, (d) clutter, (e) vegetation, (f) building,
(g) tree, (h) boat, and (i) car. As we can see, figures at column (b) of Fig.
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Figure 9: Example class attention maps of (a) images in DFC15 dataset with respect to
(b) impervious, (c) water, (d) clutter, (e) vegetation, (f) building, (g) tree, (h) boat, and
(i) car. Red indicates strong activations, while blue represents non-activations. Besides,
normalization is performed based on each row for a fair comparison among class attention
maps of the same images.

9 show that the network pays high attention to impervious regions, such as
parking lots, while figures at column (i) highlight regions of cars. However,
some of class attention maps for negative object labels exhibit unexpected
strong activations. For instance, the class attention map for the car at the
third row of Fig. 9 is not supposed to highlight any region due to its absence
of cars. This can be explained as the highlighted regions share similar pat-
terns as cars, which also illustrates why the network made wrong predictions
(cf. wrongly predicted car label in Fig. 9). Overall, the visualization of class
attention maps demonstrates that the features captured from the proposed
class attention learning layer are discriminative and class-specific. Besides,
we note that there exist strong border artifacts in figures, especially those at
column (b) of Fig. 9, which questions whether improving the quality of class
attention maps benefits the effectiveness of the BiLSTM-based sub-network.
Then we experimented with using the skip connection scheme in order to
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refine class attention maps. Experimental results demonstrated that this
provides negligible improvements.

4. Conclusion

In this paper, we propose a novel network, CA-Conv-BiLSTM, for the
multi-label classification of high-resolution aerial imagery. The proposed
network is composed of three indispensable elements: 1) a feature extraction
module, 2) a class attention learning layer, and 3) a bidirectional LSTM-
based sub-network. Specifically, the feature extraction module is responsible
for capturing fine-grained high-level feature maps from raw images, while the
class attention learning layer is designed for extracting discriminative class-
specific features. Afterwards, the bidirectional LSTM-based sub-network is
used to model the underlying class dependency in both directions and predict
multiple object labels in a structured manner. With such design, the pre-
diction of multiple object-level labels is performed in an ordered procedure,
and outputs are structured sequences instead of discrete values. We evaluate
our network on two datasets, UCM multi-label dataset and DFC15 multi-
label dataset, and experimental results validate the effectiveness of our model
from both quantitative and qualitative respects. On one hand, the mean F;
score is increased by at most 0.0446 compared to other competitors. On
the other hand, visualized class attention maps, where discriminative regions
for existing objects are strongly activated, demonstrate that features learned
from this layer are class-specific and discriminative. Looking into the future,
the application of our network can be extended to fields, such as weakly
supervised semantic segmentation and object localization.
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Relation Network for Multi-label Aerial Image
Classification

Yuansheng Hua, Lichao Mou, and Xiao Xiang Zhu, Senior Member, IEEE

Abstract—This is a preprint. To read the final version please
visit IEEE Transactions on Geoscience and Remote Sensing. Multi-
label classification plays a momentous role in perceiving intricate
contents of an aerial image and triggers several related studies
over the last years. However, most of them deploy few efforts
in exploiting label relations, while such dependencies are crucial
for making accurate predictions. Although an LSTM layer can
be introduced to modeling such label dependencies in a chain
propagation manner, the efficiency might be questioned when
certain labels are improperly inferred. To address this, we
propose a novel aerial image multi-label classification network,
attention-aware label relational reasoning network. Particularly,
our network consists of three elemental modules: 1) a label-
wise feature parcel learning module, 2) an attentional region
extraction module, and 3) a label relational inference module.
To be more specific, the label-wise feature parcel learning mod-
ule is designed for extracting high-level label-specific features.
The attentional region extraction module aims at localizing
discriminative regions in these features without region proposal
generation, and yielding attentional label-specific features. The
label relational inference module finally predicts label existences
using label relations reasoned from outputs of the previous
module. The proposed network is characterized by its capacities
of extracting discriminative label-wise features and reasoning
about label relations naturally and interpretably. In our experi-
ments, we evaluate the proposed model on two multi-label aerial
image datasets, of which one is newly produced. Quantitative
and qualitative results on these two datasets demonstrate the
effectiveness of our model. To facilitate progress in the multi-
label aerial image classification, our produced dataset will be
made publicly available.

Index Terms—Convolutional neural network (CNN), Label
relational reasoning, Attentional region extraction, Multi-label
classification, High-resolution aerial image.

1. INTRODUCTION

Recent advancements of remote sensing techniques have
boosted the volume of attainable high-resolution aerial images,
and massive amounts of applications, such as urban cartogra-
phy [1], [2], [3], [4], traffic monitoring [5], [6], [7], terrain
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Fig. 1: Example aerial images of scene river and objects
present in them. (a) bare soil, grass, tree, and water. (b)
water, bare soil, and tree. (c) water, building, grass, car, tree,
pavement, and bare soil. (d) water, building, grass, bare soil,
tree, and sand.

surface analysis [8], [9], [10], [11], and ecological scrutiny
[12], [13], have benefited from these developments. For this
reason, the aerial image classification has become one of the
fundamental visual tasks in the remote sensing community
and drawn a plethora of research interests [14], [15], [16],
[17], [18], [19], [20], [21]. The classification of aerial images
refers to assigning these images with specific labels according
to their semantic contents, and a common hypothesis shared
by many relevant studies is that an image should be labeled
with only one semantic category, such as scene categories
(see Fig. 1). Although such image-level labels [22], [23] are
capable of delineating images from a macroscopic perspective,
it is infeasible for them to provide a comprehensive view
of objects in aerial images. To tackle this, huge quantities
of algorithms have been proposed to identify each pixel in
an image [24], [25], [26] or localize objects with bounding
boxes [27], [28], [29]. However, the acquisition of requisite
ground truths (i.e., pixel-wise annotations and bounding boxes)
demands enormous expertise and human labors, which makes
relevant datasets expensive and difficult to access. With this
intention, multi-label image classification now attracts increas-
ing attention in the remote sensing community [30], [31], [32],
[33], [34] owing to that 1) a comprehensive picture of aerial
image contents can be drawn, and 2) datasets required in this
task are not expensive (only image-level labels are needed).
Fig. 1 illustrates the difference between image-level scene
labels and object labels. As shown in this figure, although
these four images are assigned with the same scene label,
their multiple object labels vary a lot. It is worth noting that the
identification of some objects can actually offer important cues
to understand a scene more deeply. For example, the existence
of building and pavement indicates a high probability that
rivers in Fig. 1c and 1d are very close to areas with frequent
human activities, while rivers in Fig. la and 1b are more
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likely in the wild due to the absence of human activity
cues. In contrast, simply recognizing scene labels can hardly
provide such information. Therefore, in this paper, we dedicate
our efforts to explore an effective model for the multi-label
classification of aerial images.

A. Challenges of Identifying Multiple labels

In identifying multiple labels of an aerial image, two main
challenges need to be faced with. One is how to extract seman-
tic feature representations from raw images. This is crucial but
difficult especially for high-resolution aerial images, as they
always contain complicated spatial contextual information.
Conventional approaches mainly resort to manually crafted
features and semantic models [22], [35], [36], [37], [38], while
these methods cannot effectively extract high-level semantics
and lead to a limited performance in classification[23]. Hence
an efficient high-level feature extractor is desirable.

The other challenge is how to take full advantage of label
correlations to infer multiple object labels of an aerial image.
In contrast to single-label classification, which mainly focuses
on modeling image-label relevance, exploring and modeling
label-label correlations plays a supplementary yet essential
role in identifying multiple objects in aerial images. For
instance, the presence of ships confidently infers the co-
occurrence of water or sea, while the existence of a car
suggests a high probability of the appearance of pavements.
Unfortunately, such label correlations are scarcely addressed
in the literature. One solution is to use a recurrent neural
network (RNN) to learn label dependencies. However, this is
done with a chain propagation fashion, and its performance
heavily depends on the learning effectiveness of its long-
term memorization. Moreover, in this way, label relations are
modeled implicitly, which leads to a lack of interpretability.

Overall, an efficient multi-label classification model is sup-
posed to be capable of not only learning high-level feature
representations but also modeling label correlations effectively.

B. Related Work

Zegeye and Demir [39] propose a multi-label active learning
framework using a multi-label support vector machine (SVM),
relying on both the multi-label uncertainty and diversity. Koda
et al. [32] introduce a spatial and structure SVM for multi-label
classification by considering spatial relations between a given
patch and its neighbors. Similarly, Zeggada et al. [33] employ
a conditional random field (CRF) framework to model spatial
contextual information among adjacent patches for improving
the performance of classifying multiple object labels.

With the development of computational resources and deep
learning, very recent approaches mainly resort to deep net-
works for multi-label classification. In [31], the authors make
use of a standard CNN architecture to extract feature rep-
resentations and then feed them into a multi-label classifi-
cation layer, which is composed of customized thresholding
operations, for predicting multiple labels. In [40], the authors
demonstrate that training a CNN for multi-label classification
with a limited amount of labeled data usually leads to an
underwhelming-performance model and propose a dynamic

data augmentation method for enlarging training sets. More
recently, Sumbul and Demir [41] propose a CNN-RNN method
for identifying labels in multi-spectral images, where a bidi-
rectional LSTM is employed to model spatial relationships
among image patches. In order to explore inherent correlations
among object labels, [34] proposes a CNN-LSTM hybrid net-
work architecture to learn label dependencies for classifying
object labels of aerial images. Besides, we also notice that
several zero short learning researches focus on employing
prior knowledge to model label relations. For instance, Sumbul
et al. [42] apply an unsupervised word embedding model to
encoding labels into word vectors, which are supposed to
contain label semantics, and then model label relationships
with these vectors. Lee et al. [43] propose to learn label
relations from structured knowledge graphs observed from the
real world.

C. The Motivation of Our Work

In order to explicitly model label relations, we propose a
label relational inference network for multi-label aerial image
classification. This work is inspired by recent successes of
relation networks in visual question answering [44], object
detection [45], video classification [46], activity recognition
in videos [47], and semantic segmentation [48]. A relation
network is characterized by its inherent capability of inferring
relations between an individual entity (e.g., a region in an
image or a frame in a video) and all other entities (e.g., all
regions in the image or all frames in the video). Besides, to
increase the effectiveness of relational reasoning, we make
use of a spatial transformer, which is often used to enhance
the transformation invariance of deep neural networks [49], to
reduce the impact of irrelevant semantic features.

More specifically, in this work, an innovative end-to-end
multi-label aerial image classification network, termed as
attention-aware label relational reasoning network, is proposed
and characterized by its capabilities of localizing label-specific
discriminative regions and explicitly modeling semantic label
dependencies for the task. This paper’s contributions are
threefold.

o We propose a novel multi-label aerial image classifica-
tion network, attention-aware label relational reasoning
network, which consists of three imperative components:
a label-wise feature parcel learning module, an attentional
region extraction module, and a label relational inference
module. To our best knowledge, it is the first time that the
idea of relation networks is employed to predict multiple
object labels of aerial images, and experimental results
demonstrate its effectiveness.

« We extract attentional regions from the label-wise feature
parcels in a proposal-free fashion. Particularly, a learnable
spatial transformer is employed to localize attentional
regions, which are assumed to contain discriminative
information, and then re-coordinate them into a given
size. By doing so, attentional feature parcels can be
yielded.

o To facilitate progress in the multi-label aerial image
classification, we produce a new dataset, AID multi-label
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Fig. 2: The architecture of the proposed attention-aware label relational reasoning network.

dataset, by relabeling images in the AID dataset [23].
In comparison with the UCM multi-label dataset [50],
the proposed dataset is more challenging due to diverse
spatial resolutions of images, more scenes, and more
samples.

The remaining sections of this paper are organized as
follows. Section II delineates three elemental modules of our
proposed network, and Section III introduces experiments,
where experimental setups are given and results are analyzed
and discussed. Eventually, Section IV draws a conclusion of
this paper.

II. METHODOLOGY

A. Network Architecture

As illustrated in Fig. 2, the proposed network comprises
three components: a label-wise feature parcel learning module,
an attentional region extraction module, and a label relational
inference module. Let L be the number of object labels and
[ be the [-th label. The label-wise feature parcel learning
module is designed to extract high-level feature maps X;
with K channels, termed as feature parcel (for more details
refer to Section II-B), for each label /. The attentional region
extraction module is used to localize discriminative regions in
each X and generate an attentional feature parcel A;, which
is supposed to contain the most relevant semantics with respect
to the label /. Finally, relations among A; and all other label-
wise attentional feature parcels are reasoned about by the label

relational inference module for predicting the presence of the
object [.

Details of the proposed network are introduced in the
remaining sections.

B. Label-wise Feature Parcel Learning

The extraction of high-level features is crucial for visual
recognition tasks, and many recent studies adopt CNNs owing
to their remarkable performance in learning such features [15],
[51], [52], [53], [54], [55], [56]. Hence, we take a standard
CNN as the backbone of the label-wise feature parcel learning
module in our model. As shown in Fig. 2, an aerial image is
first fed into a CNN (e.g., VGG-16), which consists of only
convolutional and max-pooling layers, for generating high-
level feature maps. Subsequently, these features are encoded
into L feature parcels for each label [ via a label-wise multi-
modality feature learning layer. To implement this layer, we
first employ a convolutional layer with KL filters, whose
size is 1 x 1, to extract KL feature maps. Afterwards, we
divide these features into L feature parcels, and each includes
K feature maps. That is to say, for each label, K specific
feature maps are learned, so-called feature parcel, to extract
discriminative semantics after the end-to-end training of the
whole network. We denote the feature parcel for label [ as X
in the following statements.

In our experiment, we notice that X; with a higher res-
olution is beneficial for the subsequent module to localize
discriminative regions, as more spatial contextual cues are
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Feature parcel X;

Feature parcel X;
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Fig. 3: Tllustration of the attentional region extraction module. Green dots in the left image indicate the feature parcel grid
Gx,. White dots in the middle image represent the attentional feature parcel grid G xatn, while those in the right image
indicate re-coordinated G xptin. Notably, the structure of re-coordinated G Xptin is identical to that of Gx,, and values of
pixels located at grid points in re-coordinated G xaun are obtained from those in G xg+wn. For example, the pixel at the left
top corner grid point in re-coordinated G Xpttn is assigned with the value of that at the left top corner of G Xpttn.

included. Accordingly, we discard the last max-pooling layer
in VGG-16, leading to a spatial size of 14 x 14 for outputs.
Weights are initialized with pre-trained VGG-16 on ImageNet
but updated during the training phase.

C. Attentional Region Extraction Module

Although label-wise feature parcels can be directly applied
to exploring label dependencies [34], less informative regions
(see blue areas in Fig. 3) may bring noise and further reduce
the effectiveness of these feature parcels. As shown in the
left image of Fig. 3, weakly activated regions indicate a
loose relevance to the corresponding label, while highlighted
regions suggest a strong region-label relevance. To diminish
the influence of unrelated regions, we employ an attentional
region extraction module to automatically extract discrimina-
tive regions from label-wise feature parcels.

We localize and re-coordinate attentional regions from X
with a learnable spatial transformer. Particularly, we sample a
feature parcel X into a regular spatial grid G x, (cf. green dots
in the left image of Fig. 3) according to the spatial resolution
of X, and regard pixels in X as points on the grid G x, with
coordinates (x;, ;). Similarly, we can define coordinates of a
new grid, attentional region grid G xpven (see white dots in the
middle image of Fig. 3), as (""", y{*'™), and the number of
grid points along with the height and width is equivalent to that
of G'x,. As demonstrated in [49] that G Xpten can be learned
by performing spatial transformation on Gx,, (z{", yttn)
can be calculated with the following equation:

xattn L1
|: fzttn:| = MTL Y| (D
Y 1

where My, is a learnable transformation matrix, and grid
coordinates, z; and y;, are normalized to [—1, 1]. Considering
that this module is designed for localization, we only adopt
scaling and translation in our case. Hence Eq. 1 can be

rewritten as
T
. Sz, 0 iy
= 2
|:ylattn 0 Sy, tyz yll ) ()

where s;, and s,, indicate scaling factors along x- and y-
axis, respectively, and ¢, and t,, represent how feature maps

should be translated along both axes. Notably, since different
objects distribute variously in aerial images, M, is learned
for each object label ! individually. In other words, extracted
attentional regions are label-specific and capable of improving
the effectiveness of label-wise features.

As to the implementation of this module, we first vectorize
X; with a flatten function and then employ a localization
layer (e.g., a fully connected layer) to estimate elements in
M, from the vectorized X;. Afterwards, attentional region
grid coordinates (z{*'™, ™) can be learned from (z;,y;)
with Eq. 2, and values of pixels at (" y#") is able to
be obtained from neighboring pixels by bilinear interpolation.
Finally, the attentional region grid G xpten is re-coordinated to
a regular spatial grid, which shares an identical structure with
Gx,, for yielding the final attentional feature parcel A;.

D. Label Relational Inference Module

Being the core of our model, the label relational inference
module is designed to fully exploit label interrelations for
inferring existences of all labels. Before diving into this
module, we define the pairwise label relation as a composite
function with the following equation:

LR(AI7 Am) = f¢(901m(Alv Am))v (3)

where the input is a pair of attentional feature parcels, A;
and A,,, and [ and m range from 1 to L. The functions
go,,, and fy are used to reason about the pairwise relation
between label | and m. More specifically, the role of gy,
is to reason about whether there exist relations between the
two objects and how they are related. In previous works [44],
[47], a multilayer perceptron (MLP) is commonly employed as
ge,,, for its simplicity. However, spatial contextual semantics
are not taken into account in this way. To address such issue,
here, we make use of 1 x 1 convolution instead of an MLP
to explore spatial information. Furthermore, f4 is applied to
encode the output of gg,, into the final pairwise label relation
LR(A;, A,,). In our case, f, consists of a global average
pooling layer and an MLP, which finally yields the relation
between label [ and m.
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Fig. 4: Tllustration of the label relation module.

Following the motivation of our work, we infer each label
by accumulating all related pairwise label relations, and the
accumulated label relation for object label [ is defined as:

LR(Alv *) = f¢>(z g9zm(Al7 Am))v
m#l

4)

where * represents all attentional feature parcels except Aj;.
Based on this formula, we implement the label relational
inference module with the following steps (taking the pre-
diction of label [ as an example): 1) A; and every other
attentional feature parcel are concatenated and fed into a
1 x 1 convolutional layer, respectively. 2) Afterwards, a global
average pooling layer is employed to transform gy,,, (A;, Ap,)
into vectors, which are then element-wise added. 3) Finally,
the output is fed into an MLP layer with trainable parameters
¢ to produce the accumulated label relation LR(A,, *). Note
that gy, is a learnable unit, which models pairwise relations
using convolutions. Through the end-to-end training, it could
be expected to learn data-driven label relations. Experiments in
Section III-D and Section III-E have verified that learned label
relations are in line with prior knowledge. Since we expect
the model to predict probabilities, an activation function o is
utilized to restrict each output digit to [0, 1]. For label [, a
digit approaching 1 implies a high probability of its presence,
while one closing 0 suggests the absence. Fig. 4 presents an
visual illustration of the label relational inference module.

Compared to other multi-label classification methods, our
model has three benefits:

1) The module can inherently reason about label relations
as indicated by Eq. 3 and requires no particular prior
knowledge about relations among all objects. That is to
say, our network does not need to learn how to compute
label relations and which object relations should be con-
sidered. All relations are automatically learned through
a data-driven way and proven to meet the reality in our
experiments.

The learning effectiveness is independent of long short-
term memory, leading to increased robustness. This

2)

is because, in Eq. 4, accumulated label relations are
calculated with a summation function instead of a chain
architecture, e.g., an LSTM.

The function gy,,, is learned for each object label pair
[ and m separately, which suggests that pairwise label
relations are encoded in a specific way. Besides, our
implementation of gy, can extend the applicability of
relational reasoning compared to using an MLP.

3)

Since [34] shares the same design philosophy that modeling
label relations is crucial, here we emphasize two differences
between our network and [34]: 1) the proposed network learns
to extract discriminative regions as label-wise features for
modeling label relations (cf. Section II-C) instead of directly
using entire feature maps as in [34]; 2) the proposed label
relation inference module encodes label relations explicitly
with composite functions, while in [34], label relations are
modeled implicitly via an RNN whose effectiveness depends
heavily on the learning effect of long-term memorization.
Quantitative comparisons between these two approaches are
shown in the following section.

III. EXPERIMENTS AND DISCUSSION

In this section, we conduct experiments on the UCM
[50] and proposed AID multi-label dataset for evaluating our
model. Specifically, Section III-A presents a description of
these two datasets. Afterwards, we introduce training strategies
and thoroughly discuss experimental results in the subsequent
subsections.

A. Dataset Introduction

1) UCM multi-label dataset: UCM multi-label dataset [50]
is reproduced by assigning all aerial images collected in UCM
dataset [22] with newly defined object labels. The number of
all candidate object labels is 17: building, sand, dock, court,
tree, sea, bare soil, mobile home, ship, field, tank, water, grass,
pavement, chaparral, and car. It is worth noting that labels,
such as tank, airplane, and building, exist in both [22] and [50]
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Fig. 5: Samples of various scene categories in the UCM multi-label dataset as well as associated object labels. The spatial
resolution of each image is one foot, and the size is 256 x 256 pixels. Scene and object labels of each sample are as follows:
(a) Tennis court: tree, grass, court, and bare soil. (b) Overpass: pavement, bare soil, and car. (c¢) Mobile home park: pavement,
grass, bare soil, tree, mobile home, and car. (d) Storage tank: tank, pavement, and bare soil. (e) Runway: pavement and grass.
(f) Intersection: car, tree, pavement, grass, and building. (g) River: water, tree, and grass. (h) Medium residential: pavement,
grass, car, tree, and building. (i) Harbor: ship, water, and dock. (j) Sparse residential: car, tree, grass, pavement, building, and
bare soil. (k) Golf course: sand, pavement,tree, and grass. (1) Beach: sea and sand. (m) Forest: tree, grass, and building. (n)
Baseball diamond: pavement, grass, building, and bare soil. (0) Airplane: airplane, car, bare soil, grass and pavement. (p) Dense
residential: tree, building, pavement, grass, and car. (q) Parking lot: pavement, grass, and car. (r) building: pavement, car, and
building. (s) Free way: tree, car, pavement, grass, and bare soil. (t) Chaparral: chaparral and bare soil. (u) Agricultural: tree
and field.

TABLE I: The number of images for different object categories
in the UCM multi-label dataset.

while at different levels. In [22], such terms are considered as
scene-level labels due to the fact that related images can be
characterized and depicted by them, while in [50], they mean

Category No. [ Category Name  Training Test Total

objects that may present in aerial images. 1 bare soil 577 41 718
As to properties of images in this dataset, the spatial 2 airplane 80 20 100
resolution of each sample is one foot, and the size is 256 x 256 3 building 555 136 691
ixels. All images are manually cropped from aerial image 4 car 722 164 886
PIXEIS. g : Yy cropp : gery 5 chaparral 82 33115
contributed by the National Map of the U.S. Geological Survey 6 court 84 21 105
(USGS), and there are 2100 images in total. For each object 7 dock 80 20 100
category, the number of images is listed in Table 1. Besides, 8 field 79 25 104
80% of image samples per scene class are selected to train o grass 804 171975
del, and the other 20% of images are used to test our 10 mobile home 82 20 102

our model, X o« ges are. 1 pavement 1047 253 1300
model. Numbers of images assigned to training and test sets 12 sand 218 76 294
with respect to all object labels are available in Table I as well. 13 sea 80 20 100
Some visual examples are shown in Fig. 5. 14 ship 80 22102
. 15 tank 80 20 100

2) AID multi-label dataset: In order to further evaluate 16 tree 801 208 1009
our network and meanwhile promote progress in the area of 17 water 161 42 203
multi-class classification of high-resolution aerial images, we _ [ Al 1680 420 2100

produce a new dataset, named AID multi-label dataset, based
on the widely used AID scene classification dataset [23]. The
AID dataset consists of 10000 high-resolution aerial images

collected from worldwide Google Earth imagery, including
scenes from China, the United States, England, France, Italy,
Japan, and Germany. In contrast to the UCM dataset, spatial

resolutions of images in the AID dataset vary from 0.5 m/pixel
to 8 m/pixel, and the size of each aerial image is 600 x 600
pixels. Besides, the number of images in each scene category
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Fig. 6: Samples of various scene categories in the AID multi-label dataset and their associated object labels. The spatial
resolution of each image varies from 0.5 to 8 m/pixel, and the size is 600 x 600 pixels. Here are scene and object labels
of selected samples: (a) Airport: car, building, tank, tree, airplane, grass, pavement, and bare soil. (b) Church: pavement, car,
and building. (c) Bridge: building, car, grass, pavement, tree and water. (d) Center: grass, building, tree, car, bare soil, and
pavement. (e) Bare land: bare soil, building, pavement, and water. (f) Commercial: building, car, court, grass, pavement, tree,
and water. (g) Desert: sand. (h) Forest: bare soil and tree. (i) Industrial: pavement, grass, car, bare soil, and building. (j)
Meadow: pavement and grass. (k) Mountain: tree and grass. (1) Park: bare soil, building, court, grass, pavement, tree, and
water. (m) Playground: car, grass, and pavement. (n) Pond: building, field, grass, pavement, tree, and water. (o) Port: ship,
sea, car, grass, pavement, tree, building, and dock. (p) Railway: tree, car, pavement, building, and grass. (q) Resort: pavement,
building, car, tree, field, bare soil, and water. (r) River: car, building, bare soil, dock, water, grass, pavement, tree, ship, and
field. (s) School: pavement, tank, grass, court, building, and car. (t) Sparse residential: pavement, car, building, tree, and grass.
(u) Square: tree, car, court, pavement, grass, and building. (v) Stadium: car, pavement, tree, court, grass, building, and bare
soil. (w) Storage tanks: tank, tree, car, grass, pavement, building, and bare soil. (x) Viaduct: pavement, car, bare soil, tree,
grass, and building.

ranges from 220 to 420. Overall, the AID dataset is more
challenging compared to the UCM dataset.

Here, we manually relabel some images in the AID dataset.
With extensive human visual inspections, 3000 aerial images
from 30 scenes in the AID dataset are selected and assigned
with multiple object labels, and the distribution of samples in
each category is shown in Table II. Besides, 80% of all images
are taken as training samples, while the rest is used for testing
our model. Several example images are shown in Fig. 6.

B. Training Details

As to the initialization of our network, different modules
are done in different ways. For the label-wise feature parcel

learning module, we initialize the backbone and weights in

other convolutional layers with a pre-trained ImageNet [57]

model and a Glorot uniform initializer, respectively. Regarding

the attentional region extraction module, we initialize the

transformation matrix in Eq. 1 as an identical transformation,
1 00

In the label relational inference module, weights in both
fe and gp,, . are initialized with a Glorot uniform initializer
and updated during the training phase. Notably, the entire
network is trained in an end-to-end manner, and weights in
the backbone are fine-tuned as well.
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TABLE II: The number of images for different object cate-
gories in the AID multi-label dataset.

Category No. [ Category Name  Training Test  Total
1 bare soil 1171 304 1475
2 airplane 79 20 99
3 building 1744 417 2161
4 car 1617 409 2026
5 chaparral 75 37 112
6 court 269 75 344
7 dock 221 50 271
8 field 175 39 214
9 grass 1829 466 2295
10 mobile home 1 1 2
11 pavement 1870 458 2328
12 sand 207 52 259
13 sea 177 44 221
14 ship 237 47 284
15 tank 87 21 108
16 tree 1923 483 2406
17 water 674 178 852
- ‘ All 2400 600 3000

In our case, multiple labels are encoded into multi-hot
binary sequences instead of one-hot vectors widely used in
single-label classification tasks. The length of such multi-hot
binary sequence is identical to the number of total object
categories, i.e., 17 in our case, and as to each digit, 0
suggests an absent object, while 1 indicates the presence of
its corresponding object label. Accordingly, we define the
network loss as the binary cross-entropy. Besides, Adam with
Nesterov momentum [58], which shows faster convergence
than stochastic gradient descent (SGD) for our task, are
selected and its parameters are set as recommended [58]:
e = 1le — 08, 1 = 0.9, and B2 = 0.999. The learning rate
is initially defined as 1le — 04 and decayed by a factor of 10
if the validation loss fails to decrease. Notably, we randomly
select 10% of the training samples as the validation set. That
is, during the training procedure, we use 90% of the training
samples to learn network parameters.

Our model is implemented on TensorFlow-1.12.0 and
trained for 100 epochs. The computational resource is an
NVIDIA Tesla P100 GPU with a 16GB memory. As a compro-
mise between the training speed and GPU memory capacities,
we set the size of training batches as 32. To avoid overfitting,
the training progress is terminated once the validation loss
increases continuously in five epochs.

C. Experimental Setup

To fully explore the capacity of our proposed network,
we extend our researches by replacing the backbone with
GoogLeNet (Inceptionv3) [59] and ResNet (ResNet-50 in our
case) [60]. Specifically, we adapt GooglLeNet by removing
global average pooling and fully-connected layers as well as
reducing the stride of convolutional and pooling layers in
“mixed8” to 1 to improve the spatial resolution. Besides, in
order to preserve receptive fields of subsequent convolutional
layers, filters in “mixed9” are replaced with atrous convolu-
tional filters, and the dilation rate is defined as 2. Regarding
ResNet, we set the convolution stride and dilation rate of filters

as 1 and 2, respectively, in the last residual block. Global
average pooling and fully-connected layers are removed as
well.

In our experiments, we compare the proposed attention-
aware label relational reasoning network (AL-RN-CNN) with
the following competitors: a standard CNN, CNN-RBFNN
[31], and CA-CNN-BiLSTM [34]. Regarding the CNN, we
replace its last softmax layer, designed for single-label classi-
fication, with a sigmoid layer to produce multi-hot sequences.
For the CA-CNN-BiLSTM, we follow the experimental con-
figurations in [34]. Specifically, we first initialize the feature
extraction module of CA-CNN-BiLSTM and weights in the
bidirectional LSTM layer with CNNs pre-trained on ImageNet
dataset and random values from -0.1 to 0.1, respectively.
Afterwards, we fine-tune the entire network in the training
phase with Nestro Adam optimizer, and the initial learning
rate is set as le — 04. The loss is calculated with the binary
cross-entropy, and the size of training batches is 32. Notably,
for all models, output sequences are binarized with a threshold
of 0.5 to generate final predictions.

D. Results on the UCM Multi-label Dataset

1) Quantitative analysis: In our experiment, we employ F}
[61] and F [62] scores as evaluation metrics to quantitatively
assess the performance of different models. Specifically, these
two F' scores are calculated with the following equation:

2 DeTe
Fa=(1+5) 5 S =12, (©)
where p,. indicates the example-based precision and recall [63]
of predictions. Formulas of calculating p. and r, are:
TP, TP,

T TP.YFP, °T TP.+FN,’
where TP, (example-based true positive) indicates the number
of correctly predicted positive labels in an example, while
F P, (example-based false positive) denotes the number of
those failed to be recognized. Besides, F'IN. (example-based
false negative) represents the number of incorrectly predicted
negative labels in an example. Here, an example stands for an
aerial image and its associated multiple labels.

To evaluate our network comprehensively, we take mean
Iy and Fy score as principal indexes. Moreover, we also
report mean p. and mean 7.. In addition to the example-
based perspective, label-based precision and recall are also
considered and calculated with:

TP, TP,
- TP +FP’ TP+ FN/’
to demonstrate the performance of networks from the perspec-
tive of each object label.

Table III exhibits experimental results on the UCM multi-
label dataset. We can observe that our model surpasses all
competitors on the UCM multi-label dataset with variant back-
bones. Specifically, AL-RN-VGGNet increases mean F; and
F5 scores by 7.16% and 5.64%, respectively, in comparison
with VGGNet. Compared to CA-VGG-BiLSTM, which resorts
to employing a bidirectional LSTM structure for exploring
label dependencies, our network obtains an improvement of

De @)

Dl T (8
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TABLE III: Comparisons of the classification performance on UCM Multi-label Dataset (%).

Network mean Fp mean Fb mean pe mean 7e mean p; mean 7]
VGGNet [64] 78.54 80.17 79.06 82.30 86.02 80.21
VGG-RBFNN [31] 78.80 81.14 78.18 83.91 81.90 82.63
CA-VGG-BIiLSTM [34] 79.78 81.69 79.33 83.99 85.28 76.52
AL-RN-VGGNet 85.70 85.81 87.62 86.41 91.04 81.71
GoogLeNet [59] 80.68 82.32 80.51 84.27 87.51 80.85
GoogLeNet-RBFNN [31] 81.54 84.05 79.95 86.75 86.19 84.92
CA-GoogLeNet-BiLSTM [34] 81.82 84.41 79.91 87.06 86.29 84.38
AL-RN-GoogLeNet 85.24 85.33 87.18 85.86 91.03 81.64
ResNet-50 [60] 79.68 80.58 80.86 81.95 88.78 78.98
ResNet-RBFNN [31] 80.58 82.47 79.92 84.59 86.21 83.72
CA-ResNet-BiLSTM [34] 81.47 85.27 77.94 89.02 86.12 84.26
AL-RN-ResNet 86.76 86.67 88.81 87.07 92.33 85.95

Fig. 7: Example label-specific features of (a) samples selected from the UCM multi-label dataset regarding (b) tank, (c) court,
(d) pavement, (e) car, (f) bare soil, and (g) building. Red implies strong activations, while blue indicates weak activations.

5.92% in the mean F} score. Besides, although CA-VGG-
BiLSTM is superior to VGGNet in both mean F; and Fj
scores, it achieves decreased mean precisions and recalls.
In contrast, AL-RN-VGGNet outperforms VGGNet not only
in mean F} and F5 scores but also in mean example- and
label-based precisions and recalls. For another backbone,
GoogLeNet, our network gains the best mean F} and Fj
scores. As shown in Table III, AL-RN-GoogLeNet increases
the mean F) score by 4.56% and 3.42% with respect to
GoogLeNet and CA-GoogLeNet-BiLSTM, respectively. For
the mean F, score and precisions, our model also surpasses
other competitors, which proves the effectiveness and robust-
ness of our method. AL-RN-ResNet achieves the best mean

Fy score, 0.8676, and F5 score, 0.8667, in comparison with all
other models. Furthermore, it obtains the best mean example-
based precision, 0.8881, and label-based precision, 0.9233,
and recall, 0.8595. To summarize, comparisons between AL-
RN-CNN and other models demonstrate the effectiveness of
our network. Moreover, comparisons between AL-RN-CNN
and CA-CNN-BiLSTM illustrate that the composite function-
based proposed model performs better than a BiLSTM frame-
work in terms of both accuracy and robustness. Reasons could
be that: 1) a chain-like BILSTM architecture might suffer from
the error propagation [41] and thus is sensitive to the order of
predictions, while in our network, all pair-wise label relations
are encoded separately and the final summation function is
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TABLE IV: Example Images and Predicted labels on the UCM and AID Multi-label Dataset.

Samples from the
UCM Multi-label
Dataset

building, car, court,
grass, tree, and
pavement

building, bare soil,

Ground Truths
pavement, and grass

car, tree, building,
grass, and bare soil

pavement, grass, tree,
and bare soil

car, pavement, and
building

building, car, court,
grass, tree, and
pavement

building, bare soil,

Predictions
pavement, and grass

tree, car, building,
grass, bare soil, and
pavement

pavement, grass, tree,
and bare soil

car, pavement, and
building

Samples from the
AID Multi-label
Dataset

car, bare soil, court,
building, grass, tree,
pavement, and water

building, car, grass,

Ground Truths
tree, and pavement

dock, grass, pavement,

building, car, tree, bare soil, building,
car, pavement, grass,

tree, and water

court, building, car,
bare soil, grass, tree,

sea, and ship and pavement

car, bare soil, court,
building, grass, tree,
pavement, and water

building, car, grass,

Predictions
tree, and pavement

dock, grass, pavement,

bare soil, car,
building, pavement,
water, sand, tree, and
grass

building, car, tree, court, building, car,
bare soil, grass, tree,

sea, water, and ship and pavement

Red predictions indicate false positives, while blue predictions are false negatives.

(b)

©) (d

Fig. 8: Example attentional regions for car, bare soil (soil), building (build.), pavement (pave.), court, and tank in various
scenes (a)-(d) in the UCM multi-label dataset. For each scene, only positive labels mentioned in Fig. 7 are considered.

order invariant [44]. 2) a BiLSTM-based structure models
label relations implicitly, whereas our network encodes such
relations in an explicit and direct way. Table IV presents
several example predictions from the UCM multi-label dataset.
As a supplementary study, we evaluate the robustness of our
proposed model by performing cross-validation in the training
phase. More specifically, we randomly divide training samples
into five folds and train our best-performed model, i.e., AL-
RN-ResNet, five times. For each training progress, we select
one of five folds as the validation set and train our model with

the remaining four folds. We observe that variances of mean
Fy and F5 scores are 0.38% and 0.71%, respectively. Com-
pared to improvements brought by our network, variances are
limited, and this demonstrates the robustness of our proposed
network.

2) Qualitative analysis: In order to figure out what is
going on inside our network, we further visualize features
learned from each module and validate the effectiveness of the
proposed network in a qualitative manner. In Fig. 7, a couple
of feature parcels regarding bare soil, building, car, pavement,
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Fig. 9: Example pairwise relations among labels present in scene (a)-(d), which are shown in Fig. 8. Each label at Y-axis
represents the predicted label /, and labels at X-axis are correlated labels. Normalization is performed according to each row,

and white color represents null values.

TABLE V: Comparisons of the classification performance on AID Multi-label Dataset (%).

Network mean Fp mean Fb mean pe mean re mean p; mean 7
VGGNet [64] 85.52 85.60 87.41 86.32 70.60 58.89
VGG-RBFNN [31] 84.58 85.99 84.56 87.85 62.90 69.15
CA-VGG-BILSTM [34] 86.68 86.88 88.68 87.83 72.04 60.00
proposed AL-RN-VGGNet 88.09 88.31 89.96 89.27 76.94 68.31
GoogLeNet [59] 86.27 85.77 89.49 86.00 74.18 53.69
GoogLeNet-RBFNN [31] 84.85 86.80 84.68 89.14 65.41 72.26
CA-GoogLeNet-BiLSTM [34] 85.36 85.21 88.05 85.79 68.80 59.36
proposed AL-RN-GoogLeNet 88.17 88.25 90.03 88.77 77.92 69.50
ResNet-50 [60] 86.23 85.57 89.31 85.65 72.39 52.82
ResNet-RBFNN [31] 83.77 85.87 82.84 88.32 60.85 70.45
CA-ResNet-BiLSTM [34] 87.63 88.03 89.03 88.99 79.50 65.60
proposed AL-RN-ResNet 88.72 88.54 91.00 88.95 80.81 71.12

court, and tank is displayed for several example images. Note
that for K feature maps in each feature parcel, we select
the most strongly activated one as the representative. We can
observe that discriminative regions related to positive labels
are highlighted in these feature maps, while less informative
regions are weakly activated. As an exception, the feature map
at the bottom left of Fig. 7 shows that the baseball field is
misidentified as tanks, which may lead to incorrect predictions.

For evaluating the localization ability of the proposed net-
work, we visualize attentional regions learned from the second
module. Coordinates of bottom left (BL) and top right (TR)
corners of attentional region grids are calculated with the
following equation:

‘Z,aBtzn x%ttn -1 1
|:yattn yatlt%n:| = MTl -1 1 (9)
BL TR 1 1

Fig. 8 shows some examples of learned attentional regions.
As we can see, most attentional regions concentrate on areas
covering objects of interest. Besides, it is noteworthy that
even objects are distributed dispersedly, the learned attentional
regions can still cover most of them, e.g., buildings in Fig. 8a
and cars in 8b.

Furthermore, learned pairwise label relations are visualized
in the format of matrix, where an element at (I, m) indicates
LR(A;, A,,). Fig. 9 exhibits some examples for the four
scenes in Fig. 8. In these examples, we take only positive

object labels into consideration and perform normalization
alongside each row to yield a distinct visualization of “label
relations”. Since m differs from [, we assign null values to
diagonal elements and mark them as white color in Fig. 9.
It can be seen that in Fig. 9a and 9b, relations between car
and pavement contribute significantly to predicting presences
of both car and pavement. Besides, Fig. 9d shows that the
existence of tree highly suggests the presence of bare soil,
but not vice versa. These observations illustrate that even
without prior knowledge, the proposed network can reason
about relations, that are in line with the reality.

E. Results on the AID Multi-label Dataset

1) Quantitative analysis: To further evaluate the proposed
network, we report experimental results on the AID multi-
label dataset. Evaluation metrics here are the same as those
in previous experiments, and results are presented in Ta-
ble V. As we can observe, the proposed AL-RN-CNN behaves
superior to all competitors in most of the metrics. To be
more specific, AL-RN-VGGNet improves the mean F; and
F5 score by 2.57% and 2.71%, respectively, compared to
the baseline model. In comparison with CA-VGG-BiLSTM,
our network gains an improvement of 1.41% in the mean
Fy score and 1.43% in the mean F> score. Regarding the
other two backbones, similar phenomena can be observed as
well. AL-RN-GoogLeNet achieves the highest mean F} and
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Fig. 10: Example label-specific features of (a) samples selected from the AID multi-label dataset regarding (b) building, (c)
car, (d) bare soil, (e) tree, (f) water, and (g) pavement. Red implies strong activations, while blue indicates weak activations.

(b)

Fig. 11: Example attentional regions for car, bare soil (soil), building (build.), pavement (pave.), court, and tank in various
scenes (a)-(d) in the AID multi-label dataset. For each scene, only positive labels mentioned in Fig. 10 are considered.
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Fig. 12: Example pairwise relations among labels present in scene (a)-(d), which are shown in Fig. 11. Each label at Y-axis
represents the predicted label [, and labels at X-axis are correlated labels. Normalization is performed according to each row,
and white color represents null values.
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TABLE VI: Comparison between different gg,,, (%).

Dataset gglm V*Fl G’kF1 R*F1 V*F2 G*F2 R*F2
MLP | 82.11 83.02 8536 | 81.99 84.02 86.09
UCM mul.
Conv. | 8570 8524 86.76 | 85.81 85.33 86.67
MLP | 87.79 8492 87.10| 87.74 86.97 86.83
AID mul.
Conv. | 88.09 88.17 88.72 | 88.31 88.25 88.54

Vg, Gxp,, and Rxp, indicate the mean F
VGGNet-, GoogLeNet-, and ResNet-based networks.
Vg, G*FQ, and Rxp, indicate the mean F»
VGGNet-, GoogLeNet-, and ResNet-based networks.

score achieved by

score achieved by

F5 score, 0.8817 and 0.8825, compared to GooglLeNet and
CA-GoogLeNet-BiLSTM, while AL-RN-ResNet surpasses the
second-best model by 1.09% and 0.51% in the mean F and F»
score, respectively. Besides, it is noteworthy that although CA-
GoogLeNet-BiLSTM shows a decreased performance com-
pared to the baseline model, our network still achieves higher
scores in all metrics. Moreover, we notice that the proposed
AL-RN-CNNs outperform baseline CNNs by a large margin in
the mean label-based recall, and the maximum improvement
can reach 18.30%. In conclusion, these comparisons suggest
that explicitly modeling label relations can improve the ro-
bustness and retrieval ability of a network. Several example
predictions on the AID multi-label dataset are presented in
Table IV.

2) Qualitative analysis: To dive deep into the model, we
visualize label-specific features and attentional regions in
Fig. 10 and 11, respectively. In Fig. 10, representative feature
maps in various feature parcels for bare soil, building, car,
pavement, tree, and water are displayed. As shown here,
regions with label-related semantics are highlighted, while less
informative regions present weak activations. For instance,
regions of ponds are considered as discriminative regions for
identifying water. Residential and industrial areas are strongly
activated in feature maps for recognizing building. In Fig. 11,
it can be observed that attentional regions learned from our
network are able to capture areas of semantic objects, such as
cars and trees. We also note that some attentional regions in
Fig. 11 are coarser than those in Fig. 8, which is because the
AID multi-label dataset has a lower spatial resolution.

Furthermore, pairwise relations among positive labels are
visualized in Fig. 12. As shown in Fig. 12b, 12¢, and 12d,
existences of both tree and pavement contribute significantly
to the identification of car, while the occurrence of car only
suggests a high probability that pavement presents. Strong
pairwise relations between building and other labels, e.g., car,
pavement, and tree, indicate that the presence of building can
heavily assist in predicting those labels.

F. Discussion on the Relational Inference Module

Regarding the relational inference module, the function gg,
is an important component, which reasons about relations
between two objects. Hence, in this subsection, we discuss
about different implementations of gy,, . Specifically, we com-
pare our AL-RN-CNN with LR-CNN [65], which employs
a global average pooling layer and an MLP as gs, , on
both the UCM and AID multi-label datasets. Experimental
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results are reported in Table VI. As shown in this table, our
network gains the best mean F; and F5 score on both datasets
with variant backbones. AL-RN-VGGNet achieves the highest
improvements of 3.59% and 3.82% for the mean Fj and F5
score, respectively, compared to LR-VGGNet on the UCM
multi-label dataset. AL-RN-GoogLeNet increases the mean F}
and F5 score by 3.25% and 1.28%, respectively, in comparison
with LR-ResNet on the AID multi-label dataset. Moreover,
AL-RN-CNN can encode label relations through various fields
of view by simply changing the size of convolutional filters

in gg,,, .

IV. CONCLUSION

In this work, we propose a novel aerial image multi-label
classification network, namely attention-aware label relational
reasoning network. This network comprises three components:
a label-wise feature parcel learning module, an attentional
region extraction module, and a label relational inference
module. To be more specific, the label-wise feature parcel
learning module is designed to learn high-level feature parcels,
which are proven to encompass label-relevant semantics, and
the attentional region extraction module further generates
finer attentional feature parcels by preserving only features
located in discriminative regions. Afterwards, the label re-
lational inference module reasons about pairwise relations
among all labels and exploit these relations for the final
prediction. In order to assess the performance of our network,
experiments are conducted on the UCM multi-label dataset
and a newly proposed AID multi-label dataset. In comparison
with other deep learning methods, our network can offer
better classification results. In addition, we visualize extracted
feature parcels, attentional regions, and relation matrices for
demonstrating the effectiveness of each module in a qualitative
way. Looking into the future, such network architecture has
several potentials, e.g., weakly supervised object detection and
semantic segmentation.
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Abstract

Aerial scene recognition is a fundamental visual task and has attracted an
increasing research interest in the last few years. Most of current researches
mainly deploy efforts to categorize an aerial image into one scene-level label,
while in real-world scenarios, there often exist multiple scenes in a single
image. Therefore, in this paper, we propose to take a step forward to a
more practical and challenging task, namely multi-scene recognition in sin-
gle images. Moreover, we note that manually yielding annotations for such
a task is extraordinarily time- and labor-consuming. To address this, we
propose a prototype-based memory network to recognize multiple scenes in a
single image by leveraging massive well-annotated single-scene images. The
proposed network consists of three key components: 1) a prototype learn-
ing module, 2) a prototype-inhabiting external memory, and 3) a multi-head
attention-based memory retrieval module. To be more specific, we first learn
the prototype representation of each aerial scene from single-scene aerial im-
age datasets and store it in an external memory. Afterwards, a multi-head
attention-based memory retrieval module is devised to retrieve scene pro-
totypes relevant to query multi-scene images for final predictions. Notably,
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Figure 1: Illustration of how humans learn to perceive unconstrained aerial images being
composed of multiple scenes. We first learn and memorize individual aerial scenes. Then
we can possess the capability of understanding complex scenarios by learning from only a
limited number of hard instances. We believe by simulating this learning process, a deep
neural network can also learn to interpret multi-scene aerial images.

only a limited number of annotated multi-scene images are needed in the
training phase. To facilitate the progress of aerial scene recognition, we pro-
duce a new multi-scene aerial image (MAI) dataset. Experimental results on
variant dataset configurations demonstrate the effectiveness of our network.
Our dataset and codes are publicly available.

Keywords: Convolutional neural network (CNN), multi-scene recognition
in single images, memory network, multi-scene aerial image dataset,
multi-head attention-based memory retrieval, prototype learning.

1. Introduction

With the enormous advancement of remote sensing technologies, mas-
sive high-resolution aerial images are now available and beneficial to a large
variety of applications, e.g., urban planning [1, 2, 3, 4, 5, 6, 7|, traffic mon-
itoring [8, 9], disaster assessment [10, 11], and natural resource manage-
ment [12, 13, 14, 15, 16, 17, 18]. Driven by these applications, aerial scene
recognition that refers to assigning aerial images scene-level labels is now
becoming a fundamental but challenging task.

Thttps://github.com/Hua-YS/Prototype-based-Memory-Network



In recent years, many efforts [19], e.g., developing novel network archi-
tectures [20, 21, 22, 23, 24, 25] and pipelines [26, 27, 28, 29], publishing
large-scale datasets [30, 31|, introducing multi-modal and multi-temporal
data [32, 33, 34, 35], have been deployed to address this task, and most of
them treat it as a single-label classification problem. A common assump-
tion shared by these researches is that an aerial image belongs to only one
scene category, while in real-world scenarios, it is more often that there ex-
ist various scenes in a single image (cf. Figure 1). Furthermore, we notice
that aerial images used to learn single-label scene classification models are
usually well-cropped so that target scenes could be centered and account
for the majority of an aerial image. Unfortunately, this might be infeasible
for practical applications. Therefore, in this paper, we aim to deal with a
more practical and challenging problem, multi-scene classification in a single
image, which refers to inferring multiple scene-level labels for a large-scale,
unconstrained aerial image. Figure 1 shows an example image, where we can
see that multiple scenes, e.g., residential, parking lot, and commercial,
co-exist in one aerial image. We note that there is another research branch
of aerial image understanding, multi-label object classification, which refers
to the process of inferring multiple objects present in an aerial image. These
studies [36, 37, 38, 39, 40, 41, 42] mainly focus on recognizing object-level
labels, while in our task, an image is classified into multiple scene categories,
which provides a more comprehensive understanding of large-scale aerial im-
ages in scene-level. To the best of our knowledge, multi-scene recognition in
unconstrained aerial images still remains underexplored in the remote sensing
community.

To achieve this task, huge quantities of well-annotated multi-scene images
are needed for the purpose of training models. However, we note that such
annotations are not easy in the remote sensing community. This could be
attributed to the following two reasons. On the one hand, the visual inter-
pretation of multiple scenes is more arduous than that of a single scene in an
aerial image, and therefore, labeling multi-scene images requires more work.
On the other hand, low-cost annotation techniques, e.g., resorting to crowd-
sourcing OpenStreetMap (OSM) through keyword searching [30, 31, 43], per-
form poorly in yielding multi-scene datasets owing to the incompleteness and
incorrectness of certain OSM data. Examples of erroneous OSM data are
shown in Figure 2. In addition, manually rectifying annotations generated
from crowdsourcing data are inevitable due to error-proneness. Such a pro-
cedure is quite labor-consuming, as every scene is required to be checked
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Figure 2: Examples of incomplete (red) and incorrect (yellow) OSM data. Red: the com-
mercial is not annotated in OSM data. Yellow: the orchard is mislabeled as residential.

in case that present ones are mislabeled as absent. Aiming to solve the
aforementioned limitations, in this work, we propose to train a network for
recognizing complex multi-scene aerial images by using only a small num-
ber of labeled multi-scene images but a huge amount of existing, annotated
single-scene data. Our motivation is based on an intuitive observation about
how humans learn to perceive complex scenes being composed of multiple
entities [44, 45, 46]: we first learn and memorize individual objects (through
flash cards for example) when we were babies and then possess the capa-
bility of understanding complex scenarios by learning from only a limited
number of hard instances (cf. Figure 1). We believe that this learning pro-
cess also applies to the interpretation of multi-scene aerial images. Driven
by this observation, we propose a novel network, termed as prototype-based
memory network (PM-Net), which is inspired by recent successes of memory
networks in natural language processing (NLP) tasks [47, 48] and video anal-
ysis [49, 50, 51]. To be more specific, we first learn the prototype representa-
tion of each aerial scene from single-scene aerial images and then store these
prototypes in the external memory of PM-Net. Afterwards, for a given query
multi-scene image, a multi-head attention-based memory retrieval module is
devised to retrieve scene prototypes that are associated with the query image
from the external memory for inferring multiple scene labels.
The contributions of this work are fourfold.

e We take a step forward to a more practical and challenging task in
aerial scene understanding, namely multi-scene classification in single



images, which aims to recognize multiple scenes present in a large-
scale, unconstrained aerial image. Such a task is in line with real-world
scenarios and capable of providing a comprehensive picture for a given
geographic area.

e Given that labeling multi-scene images is very labor-intensive and time-
consuming, we propose a PM-Net that can be trained for our task by
leveraging large numbers of existing single-scene aerial images and a
small number of labeled multi-scene images.

e In order to facilitate the progress of multi-scene recognition in sin-
gle aerial images, we create a new dataset, multi-scene aerial image
(MAI) dataset. To the best of our knowledge, this is the first publicly
available dataset for aerial multi-scene interpretation. Compared to
existing single-scene aerial image datasets, images in our dataset are
unconstrained and contain multiple scenes, which are more in line with
the reality.

e We carry out extensive experiments with different configurations. Ex-
perimental results demonstrate the effectiveness of the proposed net-
work.

The remaining sections of this paper are organized as follows. Section 2
reviews studies in memory networks and prototypical networks, and the ar-
chitecture of the proposed prototype-based memory network is introduced
in Section 3. Section 4 describes experimental configurations and analyzes
results. Eventually, conclusions are drawn in Section 5.

2. Related Work

Since very few efforts have been deployed to this task in the remote sensing
community, we only review literatures related to our algorithm in this section.

2.1. Memory Networks

A memory network takes as input a query and retrieves complementary
information from the external memory. In [47], the memory network is first
proposed and utilized to address question-answering tasks, where questions
are regarded as queries, and statements are stored in the external memory.
To retrieve statements for predicting answers, the authors compute relative



distances between queries and the external memory through dot product. In
the following work, Miller et al. [48] improves the efficiency of retrieving
large memories by pre-selecting small subsets with key hashing. Moreover,
the memory network is further applied in video analysis [49, 50, 51] and image
captioning [52]. In [49], the authors devise a dual augmented memory net-
work to memorize both target and background features of an video, and use a
Long Short-Term Memory (LSTM) to communicate with previous and next
frames. In [50], the authors propose a memory network to memorize normal
patterns for detecting anomalies in an video. As an attempt in image cap-
tioning, Cornia et al. [52] devise a learnable memory to learn and memorize
priori knowledge for encoding relationships between image regions. Inspired
by these works, we devise a memory network and store scene prototypes in
the memory for recognizing scenes present in multi-scene images.

2.2. Prototypical Networks

Prototypical networks are characterized by classifying images according
to their distances from class prototypes. In learning with limited train-
ing samples, such networks are popular and achieved many successes re-
cently [53, 54, 55, 56, 57, 58]. To be specific, Snell et al. [53] propose to first
learn a prototype representation for each category and then identify images
by finding their nearest category prototypes. Guerriero et al. [54] aim to al-
leviate the heavy expense of learning prototypes by initializing and updating
prototypes with those learned in previous training epochs. Yang et al. [55]
propose to combine prototypical networks and CNNs for tackling the open
world recognition problem and improving the robustness and accuracy of net-
works. Similarly, Huang et al. [56] propose to integrate prototypical networks
and graph convolutional neural networks for learning relational prototypes.
Albeit variant, most existing works share a common way to extract proto-
types, which is taking average of samples belonging to the same categories.
Therefore, we follow this prototype extraction strategy in our work.

3. Methodology

3.1. Overview

The proposed PM-Net consists of three essential components: a proto-
type learning module, an external memory, and a memory retrieval module.
Specifically, the prototype learning module is devised to encode prototype
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Figure 3: Architecture of the proposed PM-Net. Particularly, we first learn scene pro-
totypes ps from well-annotated single-scene aerial images and then store them in the
external memory M of PM-Net. Afterwards, given a query multi-scene image, a multi-
head attention-based memory retrieval module is devised to retrieve scene prototypes that
are relevant to the query image, yielding 2z’ for the prediction of multiple labels. f4 de-
notes the embedding function, and its output is a D-dimensional feature vector. S and H
represent numbers of scenes and heads, respectively. L and U denote channel dimensions
of the key and value in the memory retrieval module.

representations of aerial scenes, which are then stored in the external mem-
ory. The memory retrieval module is responsible for retrieving scene pro-
totypes related to query images through a multi-head attention mechanism.
Eventually, retrieved scene prototypes are utilized to infer the existence of
multiple scenes in the query image.

3.2. Scene Prototype Learning and Writing

Following the observation introduced in Section 1, we propose to learn
and memorize scene prototypes with the support of single-scene aerial images.
The procedure consists of two stages. We first employ an embedding function
to learn semantic representations of all single-scene images. Then, feature
representations belonging to the same scene category are encoded into a scene
prototype and stored in the external memory.

Formally, let X denote the i-th single-scene image belonging to scene s,
and ¢ ranges from 1 to N,. Ny is the number of samples annotated as s. The



embedding function f, can be learned via the following objective function:

exp (—go(f3(X})))

LXLy) = —ylog 5 e (ol X7))

(1)

where ¢ represents learnable parameters of fy, and y° is a one-hot vector
denoting the scene label of X?. gy is a multilayer perceptron (MLP) with
parameters 6 and its outputs are activated by a softmax function to predict
probability distributions. Following the overwhelming trend of deep learning,
here we employ a deep CNN, e.g., ResNet-50 [59], as the embedding function
fs and learn its parameters on public single-scene aerial image datasets. After
sufficient training, fs is expected to be capable of learning discriminative
representations for different aerial scenes.

Once f; is learned, the scene prototype can be computed by averaging
representations of all aerial images belonging to the same scene [53, 54, 55].
Let ps be the prototype representation of scene s. We calculate p, with the
following equation:

1 &
ps = EZ}%(X?)- (2)

By doing so, in the single-scene classification, an image closely around p;
in the common embedding space is supposed to belong to scene s. Similarly,
in the multi-scene scenario, the representation of an aerial image compris-
ing scene s should show high relevance with p,. After encoding all scene
prototypes, the external memory M can be formulated as follows:

M = [p17p27"'7pS}T7 (3>

where S denotes the number of scenes. [--- ,- -] represents the concatenation
operation. Given that p, is a D-dimensional vector, M is a matrix of S x
D. Note that D varies when using different backbone CNNs as embedding
functions.

3.8. Multi-head Attention-based Memory Retrieval

Inspired by successes of the multi-head self-attention mechanism [60] in
natural language processing tasks [61, 62, 63, 64], we develop a multi-head
attention-based memory retrieval module to retrieve scene prototypes from
the memory M for a given query image X. Given a query multi-scene aerial



image X, to retrieve relevant scene prototypes from M, we develop a multi-
head attention-based memory retrieval module. In particular, we first extract
the feature representation of X through the same embedding function fy and
linearly project it to an L-dimensional query Q(X). Similarly, we transform
the external memory M into key K(M) and value V(M), and both are
implemented as MLPs. The channel dimension of the key is L, while that of
the value is U. The relevance between X and each scene prototype ps can
be measured by dot product similarity and a softmax function as follows:

Qfo(X)) - K(M)"
VL

The output is an S-dimensional vector, where each component represents
a relevance probability that a specific scene prototype is related to the query
image. Subsequently, the retrieved scene prototypes are computed by weight-
summing all values with the following equation:

R(X, M) = softmax(

)- (4)

z=R(X,M) V(M). (5)

Since the memory retrieval is designed in a multi-head fashion, the final
retrieved prototype is reformulated as follows:

Z/: [21722,...,,2[{], (6)
where H denotes the number of heads, and each head yields a retrieved
prototype zj, by transforming X and M to the variant query Qu(fs(X)),
key K, (M), and value V;(M). Eventually, the output 2’ is fed into a fully-
connected layer followed by a sigmoid function for inferring presences of aerial
scenes.

3.4. Implementation Details

For a comprehensive assessment of our PM-Net, we implement the em-
bedding function with various backbone CNNs. Specifically, we conduct
experiments on four CNN architectures, and details are as follows:

e PM-VGGNet: f, is built on VGG-16 [65] by replacing all layers after
the last max-pooling layer in block5 with a global average pooling layer.

e PM-Inception-V3: Inception-V3 [66] is utilized, and layers before and
including the global average pooling layer are employed as fy.

9



e PM-ResNet: We modify ResNet-50 [59] by discarding layers after the
global average pooling layer and using the remaining layers as f;.

e PM-NASNet: The backbone of f, is mobile NASNet [67]. As with the
modification in PM-ResNet, only layers before and including the global
average pooling layer are used.

In our experiments, we train original deep CNNs on single-scene aerial
image datasets and then take them as the embedding function fy4 following
the aforementioned points. Subsequently, we yield scene prototypes p, and
concatenate all of them along the first axis to form M.

4. Experiments and Discussion

In this section, we introduce a newly produced multi-scene aerial image
dataset, MAI dataset, and two single-scene datasets, i.e., UCM and AID
datasets, which are used in experiments. Then network configurations and
training schemes are detailed in Subsection 4.2. The remaining subsections
discuss and analyze the performance of the proposed network thoroughly.

4.1. Dataset Description and Configuration

4.1.1. MAI dataset

To facilitate the progress of aerial scene interpretation in the wild, we
yield a new dataset, MAI dataset, by collecting and labeling 3923 large-scale
images from Google Earth imagery that covers the United States, Germany,
and France. The size of each image is 512 x 512, and spatial resolutions vary
from 0.3 m/pixel to 0.6 m/pixel. After capturing aerial images, we manually
assign each image multiple scene-level labels from in total 24 scene categories,
including apron, baseball, beach, commercial, farmland, woodland, parking
lot, port, residential, river, storage tanks, sea, bridge, lake, park, roundabout,
soccer field, stadium, train station, works, golf course, runway, sparse shrub,
and tennis court. Notably, OSM data associated with the collected images
cannot be directly employed as reference owing to the problems presented in
Section 1. Such a labeling procedure is extremely time- and labor-consuming,
and annotating one image costs around 20 seconds, which is ten times more
than labeling a single-scene image. Several example multi-scene images are
shown in Figure 4. Numbers of aerial images related to various scenes are
reported in Figure 5. Among existing datasets, BigEarthNet [68] is one of

10
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Figure 4: Example images in our MAI dataset. Each image is 512 x 512 pixels, and
their spatial resolutions range from 0.3 m/pixel to 0.6 m/pixel. We list their scene-level
labels here: (a) farmland and residential; (b) baseball, woodland, parking lot, and tennis
court; (¢) commercial, parking lot, and residential; (d) woodland, residential, river, and
runway; (e) river and storage tanks; (f) beach, woodland, residential, and sea; (g) farmland,
woodland, and residential; (h) apron and runway; (i) baseball field, parking lot, residential,
bridge, and soccer field.

11



3000

2500 2387

2007
2000 —

1566 1610
1500

1222

1000 878

764 756
638
500
336
271 281 302
5 - D N - N D - D D I] - =
10 9
N O |:| (| L . L I:l (=] D (o D o 2O
N & @ &
&
o

Figure 5: Statistics of the proposed MAI dataset for multi-scene classification in single
aerial images.

the most relevant datasets, which consists of Sentinel-2 images acquired over
the European Union with spatial resolutions ranging from 10 m/pixel to 60
m/pixel. Spatial sizes of images vary from 20 x 20 pixels to 120 x 120 pixels,
and each is assigned multiple land-cover labels provided from the CORINE
Land Cover map?. Compared to BigEarthNet, our dataset is characterized
by its high-resolution large-scale aerial images and worldwide coverage.

4.1.2. UCM dataset

UCM dataset [69] is a commonly used single-scene aerial image dataset
produced by Yang and Newsam from the University of California Merced.
This dataset comprises 2100 aerial images cropped from aerial ortho imagery
provided by the United States Geological Survey (USGS) National Map, and
the spatial resolution of the collected images is one foot. The size of each
image is 256 x 256 pixels, and all image samples are classified into 21 scene-
level classes: overpass, forest, beach, baseball diamond, building, airplane,
freeway, intersection, harbor, golf course, runway, agricultural, storage tank,
mobile home park, medium residential, sparse residential, chaparral, river,
tennis courts, dense residential, and parking lot. The number of aerial im-
ages collected for each scene is 100, and several example images are shown in
Figure 6. To learn scene prototypes from these single-scene images, we ran-
domly choose 80% of image samples per scene category to train and validate

2https://land.copernicus.eu/pan-european/corine-land-cover
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Figure 6: Example single-scene aerial categories in the UCM dataset: (a) agricultural, (b)
dense residential, (c) forest, (d) storage tanks, (e) baseball field, (f) parking lot, (g) river,
(h) runway, (i) golf course, and (j) tennis court.

the embedding function and utilize the rest for testing.

4.1.8. AID dataset

AID dataset [30] is a another popular single-scene aerial image dataset
which consists of 10000 aerial images with a size of 600 x 600 pixels. These
images are captured from Google Earth imagery that is taken over China, the
United States, England, France, Italy, Japan, and Germany, and spatial res-
olutions of the collected images vary from 0.5 m/pixel to 8 m/pixel. In total,
there are 30 scene categories, including viaduct, river, baseball field, center,
farmland, railway station, meadow, bare land, storage tanks, beach, moun-
tain, park, bridge, playground, church, commercial, desert, forest, parking,
industrial, square, sparse residential, pond, medium residential, port, resort,
airport, school, stadium, and dense residential. The number of images in dif-
ferent classes ranges from 220 to 420. Similar to the data split in the UCM
dataset, 20% of images are chosen from each scene as test samples, while the
remaining images are utilized to train and validate the embedding function.
Some example images of the AID dataset are exhibited in Figure 7.

13



4.1.4. Dataset configuration

In order to widely evaluate the performance of our method, we utilize
two variant dataset configurations, UCM2MAI and AID2MAI, based on
common scene categories shared by UCM/AID and MAI. Specifically, the
UCM2MALI configuration consists of 1600 single-scene aerial images from the
UCM dataset and 1649 multi-scene images from our MAI dataset. 16 aerial
scenes that are commonly included in both two datasets are considered in
UCM2MALI, and numbers of their associated images are listed in Table 1.
Besides, the AID2MAI configuration is composed of 7050 and 3239 aerial
images from the AID and MAI datasets, respectively. 20 common scene cat-
egories are taken into consideration, and the number of images related to
each scene is present in Table 1. Although such configurations might limit
the number of recognizable scene classes, we believe this limitation can be
addressed by collecting more single-scene images by crawling OSM data and
producing large-scale multi-scene aerial image datasets. We select only 90
and 120 multi-scene aerial images from UCM2MAI and AID2MAI as train-
ing instances, respectively, and test networks on the remaining multi-scene
images. For rare scenes (e.g., port and train station), we select all associ-
ated training images, while for common scenes, we randomly select several
of their training samples. It is noteworthy that we yield the scene prototype
of residential by taking an average of high-level representations of aerial
images belonging to scene medium residential and dense residential.
Besides, although the UCM and AID datasets do not contain images for
sea, their images for beach often comprise both sea and beach (cf. (c) in
Figure 7). Therefore, we make use of training samples labeled as beach to
yield the prototype representation of sea.

4.2. Training Details

The training procedure consists of two phases: 1) learning the embedding
function fs on large quantities of single-scene aerial images and 2) training
the entire PM-Net on a limited number of multi-scene images in an end-to-
end manner. Thus, various training strategies are applied to each phase and
detailed as follows.

In the first training phase, the embedding function fy is initialized with
the corresponding deep CNNs pretrained on ImageNet [70], and weights in gy
are initialized by a Glorot uniform initializer. Eq. (1) is employed as the loss
of the network, and Nestrov Adam [71] is chosen as the optimizer, of which
parameters are set as recommended: 81 = 0.9, 85 = 0.999, and ¢ = 1le — 08.

14



Figure 7: Example single-scene aerial categories in the AID dataset: (a) beach, (b) baseball
field, (c) airport, (d) railway station, (e) stadium, (f) park, (g) playground, (h) bridge, (i)
viaduct, and (j) commercial.

The learning rate is set as 2e — 04 and decayed by /0.1 when the validation
loss fails to decrease for two epochs.

In the second learning phase, we initialize f; with parameters learned
in the previous training stage and employ the Glorot uniform initializer to
initialize all weights in Qp, Vi, Ky, and the last fully-connected layer. L and
U are set to the same value of 256, and the number of heads is defined as 20.
Notably, all weights are trainable, and the embedding function is tuned dur-
ing the second training phase as well. Multiple scene-level labels are encoded
as multi-hot vectors, where 0 indicates the absence of the corresponding scene
while 1 refers to existing scenes. Accordingly, the loss is defined as binary
cross-entropy. The optimizer is the same as that in the first training phase,
but here we make use of a relatively large learning rate, 5e — 4. The network
is implemented on TensorFlow and trained on one NVIDIA Tesla P100 16GB
GPU for 100 epochs. We set the size of training batch to 32 for both training
phases.

4.8. Evaluation Metrics

For the purpose of evaluating the performance of networks quantitatively,
we utilize example-based F} [72] and F [73] scores as evaluation metrics and

15



Table 1: The Number of Images Associated with Each Scene.

UCM2MAI AID2MAI
Scene Category UCM MAI AID MAI
apron 100 194 360 o4
baseball field 100 75 220 235
beach 100 94 400 130
commercial 100 607 350 1391
farmland 100 680 370 983
woodland 100 762 250 1312
parking lot 100 708 390 1777
port 100 3 380 9
residential 200 958 700 2082
river 100 209 410 686
storage tanks 100 89 360 193
sea 100* 51 400* 59
golf course 100 75 - -
runway 100 230 - -
sparse shrub 100 336 - -
tennis court 100 114 - -
bridge - - 360 878
lake - - 420 756
park - - 350 638
roundabout - - 420 281
soccer field - - 370 302
stadium - - 290 136
train station - - 260 9
works - - 390 186
All 1600 1649 7050 3239

* indicates that the number of images is not counted in total

amounts, as the scene prototype of beach and sea are learned
from the same images.

calculate them with the following equation:
pere
Fy=(1+p%)=-2—,
s=(1+75) S
16

p=12,



Table 2: Differences between Two Training Phases.

Dataset
Phase | Learnable Module Memory
Pretraining f, | Fine-tuning module
1 prototype learning ImageNet UCM/AID updated
2 memory retrieval UCM/AID MAI frozen

where p, and 7. denote example-based precision and recall [74]. We calculate
p. and r, as follows:

TP, TP,

Pe=Tp TFP T TP. L FN. (8)

where F'N,, F'P., and TP, represent numbers of false negatives, false posi-
tives, and true positives in an example, respectively. In our case, an example
is a multi-scene aerial image, and by averaging scores of all examples in the
test set, the mean example-based F' scores, precision, and recall can be even-
tually computed. In addition to example-based evaluation metrics, we also
calculate label-based precision p; and recall r; with Eq. 8 but replace F'N,,
FP,, and TP, with numbers of false negatives, false positives, and true pos-
itives in respect of each scene category. The mean p; and r; can then be
calculated. Note that principle indexes are the mean F; and F5 scores.

4.4. Results on UCM2MAI

For a comprehensive evaluation, we compare the proposed PM-Net with
two baselines, CNN* and CNN. The former is initialized with parameters pre-
trained on ImageNet, and the latter is pretrained on single-scene datasets.
Besides, we compare our network with a memory network, Mem-N2N [47].
Since Mem-N2N was proposed for the question answering task, we adapt it
to our task by replacing its inputs, i.e., embeddings of questions and state-
ments, with query image representations f,(X) and scene prototypes ps,
respectively. To be more specific, we feed X to a CNN backbone and take
its output as the input of Mem-N2N. Scene prototypes are stored in the mem-
ory of Mem-N2N and retrieved according to fs(X ). The initialization of f,
is the same as that of our network, and the entire Mem-N2N is trained in
an end-to-end manner. Various backbones of embedding functions are test,
and quantitative results are reported in Table 3. Besides, we also compare
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Table 3: Numerical Results on UCM2MAI (%).

Model m. Fi m F, mp, mr., mp mnmn
VGGNet* [65] 32.16  32.79 35.08 34.35 21.74 2257
VGGNet [65] 51.42  49.04 62.00 48.38 36.80 27.44

Mem-N2N-VGGNet [47] 52.16  50.93 57.26 50.73 20.79 2258
K-Branch CNN [36] 47.04 43.15 64.57 41.83 3793 22.28
proposed PM-VGGNet 54.42 51.16 67.35 4995 47.24 26.79
Inception-V3* [66] 48.03 44.37 62.22 4280 47.36 20.43
Inception-V3 [66] 53.96 51.28 65.47 50.49 51.03 32.88

Mem-N2N-Inception-V3 [47]  56.06 55.27 62.95 55.92 47.90 30.48
proposed PM-Inception-V3 58.56 58.06 64.17 58.73 46.44 26.47
ResNet* [59] 48.36 45.00 63.90 43.84 53.63 28.35
ResNet [59] 51.39 48.31 65.33 47.37 51.89 30.54
Mem-N2N-ResNet [47] 54.31 51.45 63.97 50.31 44.33 24.58
proposed PM-ResNet 56.89 54.11 69.85 53.38 55.93 29.76
NASNet* [67] 43.64 39.94 5856 38.39 46.01 19.69
NASNet [67] 52.03 49.43 64.24 4875 49.99 33.75
Mem-N2N-NASNet [47] 55.17 53.05 64.71 52.65 49.60 29.14
proposed PM-NASNet 60.13 59.57 67.04 60.42 58.60 35.04

CNN* is initialized with weights pretrained on ImageNet.

CNN, Mem-N2N, and PM-Net are initialized with parameters pretrained on the
UCM dataset.

m.[F] and m.F, indicate the mean F; and F, score.

m. p. and m. 7. indicate mean example-based precision and recall.

m. p; and m. 7; indicate mean label-based precision and recall.

with a multi-attention driven multi-label classification network, termed as
K-Branch CNN [36]. K-Branch samples images into K spatial resolutions
and extracts their features with separate branches. Afterwards, a bidirec-
tional recurrent neural network is employed to encode their relationships for
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Table 4: Example Images and Predictions on UCM2MAIL

Sample
Multi-scene
Aerial Images

from MAI
Dataset
farmland, commercial, woodland commercial,
Ground Truths woodland, parking lot, farmlan d, beach, parking
residential residential lot, residential
farmland, commercial, woodland commercial,
Predictions woodland, parking lot, farmlan d7 beach, parking
residential residential lot, residential
Sample

Multi-scene
Aerial Images
from MAI
Dataset

[N e I R

baseball field,

farmland, arkine lot beach, parking
Ground Truths parking lot, parking ‘ot lot, woodland, apron, runway
. . residential, ; .
residential . residential, sea
tennis court
baseball field, commercial, apron,
farmland, . . = ]
. . parking lot, beach, parking residential,
Predictions parking lot, . .
. ) residential, lot, woodland, runway,
residential

tennis court

residential, sea parking lot

Blue predictions are false negatives, while red predictions indicate false positives.

inferring multiple labels. In our experiments, K is set as default, 3, and input
sizes of the three branches are 224 x 224, 112 x 112, and 56 x 56, respectively.
Here we analyze results from the following three perspectives.
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Table 5: Numerical results on AID2MAI (%).

Model m. Fi m F, mp, mr., mp mnmn
VGGNet* [65] 41.57 36.36  64.02 34.04 2598 12.80
VGGNet [65] 48.30  50.80 48.53 54.19 32.89 44.75

Mem-N2N-VGGNet [47] 4592  43.17 56.16 42.22  23.10 18.76
K-Branch CNN [36] 47.67 43.88 63.84 4237 26.53 16.15
proposed PM-VGGNet 54.37 51.44 65.69 50.39 48.06 2240
Inception-V3* [66] 4592  40.76 66.17 38.43 39.56 14.71
Inception-V3 [66] 51.81 4944 62.91 4893 45.26 36.32

Mem-N2N-Inception-V3 [47] 52.13 53.83 52.53 56.21 33.33 29.05
proposed PM-Inception-V3  53.08 49.26 69.42 47.85 48.20 24.65
ResNet* [59] 50.06 46.88 64.32 4598 39.48 22.34
ResNet [59] 54.74 52776  65.54 52.62 47.54 40.23
Mem-N2N-ResNet [47] 53.26 60.41 46.15 68.07 23.75 30.21
proposed PM-ResNet 57.42 54.34 70.62 53.33 55.34 29.55
NASNet* [67] 4753 4293 65.57 4094 34.79 16.42
NASNet [67] 53.08 50.68 64.33 50.17 46.68 37.43
Mem-N2N-NASNet [47] 39.27  40.72 38.52 4238 20.03 20.41
proposed PM-NASNet 54.11 52.39 64.03 52.30 43.16 33.99

CNN, Mem-N2N, and PM-Net are initialized with parameters pretrained on the
AID dataset.

4.4.1. The effectiveness of learnt single-scene prototypes

To demonstrate the effectiveness of the prototype-inhabiting external
memory, here we focus on comparisons between PM-Net and standard CNNs.
In Table 3, PM-VGGNet increases the mean F; and F), scores by 3.00% and
2.12%, respectively, with respect to VGGNet, and PM-ResNet obtains incre-
ments of 5.50% and 5.80% in the mean F; and F, scores compared to ResNet.
Besides, it is interesting to observe that PM-NASNet achieves not only the
best mean F; and Fy scores (60.13% and 59.57%) but also relatively high
example-based precision and recall in comparison with other competitors.
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Table 6: Example Images and Predictions on AID2MAL

Sample
multi-scene
aerial images

from MAI
dataset
bridge, river, beach, . baseball field,
mmercial mmercial bridge, rking lot
Ground Truths corameretas, corameretas, farmland, river, patxiiig fot,
parking lot, parking lot, woodland park,
residential residential, sea residential
bridge, river, beach, . baseball field,
. : bridge, .
. commercial, commercial, . parking lot,
Predictions . . farmland, river,
parking lot, parking lot, woodland park,
residential residential, sea residential
Sample

multi-scene
aerial images

from MAI
dataset
baseball field,
beach,. bridge, comrpermal, baseball field,
commercial, woodland, parking lot, .
Ground Truths . . parking lot,
parking lot, river, storage park, soccer field
residential, sea tanks residential,
soccer field
beach, bridge, baseball ﬁeld, baseball ﬁeld,
. commercial, commercial,
commercial, woodland,
o . . woodland, woodland,
Predictions parking lot, farmland, river, . .
. . parking lot, parking lot,
residential, sea,  storage tanks, ark. soccor ark. soccer
woodland parking lot pars, pars,

field, residential field, residential

21



D
o

AID2MAI
* @ <UCM2MAI

9]
00
°

== Average

w
[e)]

Mean F1 score (%)
(9]
N

(%)
N

[
o

5 10 15 20 25 30 35 40
Number of heads

Figure 8: The influence of the number of heads on both dataset configurations. Blue and
yellow dot lines represent mean Fj scores on UCM2MAI and AID2MAI. The Red line
indicates the average of them.

This demonstrates that employing NASNet as the embedding function can
enhance the robustness of PM-Net. Comparisons between PM-Inception-V3
with Inception-V3 show that the external memory module contributes to
improvements of 4.60% and 6.78% in the mean F; and F5, scores, respec-
tively. To summarize, memorizing and leveraging scene prototypes learned
from huge quantities of single-scene images can improve the performance of
network in multi-label scene recognition when limited training samples are
available. For a deep insight, we further conduct ablation studies on the
prototype modality and embedding function.

Single- vs. multi-prototype representations. We note that im-
ages collected over variant countries show high intra-class variability, and
therefore, we wonder whether learning multi-prototype scene representations
could improve the effectiveness of PM-Net. Specifically, instead of yielding
scene prototypes via Eq. 2, we partition representations of single-scene aerial
images belonging to the same scene into several clusters and take cluster cen-
ters as multi-prototype representations of each scene. In our experiments,
we test two clustering methods, K-Means [75] and Agglomerative [76], with
PM-ResNet on both UCM2MAI and AID2MAI, and results are shown in
Figure 9. We can see that the performance of PM-ResNet is decreased with
the increasing number of cluster centers either using K-Means or Agglomer-
ative clustering algorithms. Explanations could be that there are no obvious
subclusters within each scene category (cf. Figure 13), and thus PM-Net
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Figure 9: The influence of the number of cluster centers on both dataset configurations. K-
Means (turquoise and orange dash lines) and Agglomerative (blue and red lines) clustering
algorithms are tested with PM-ResNet on both UCM2MAI and AID2MALI, respectively.

does not benefit from fine-grained multi-prototype representations.

Frozen vs. trainable embedding function. The embedding function
plays a key role in both scene prototype learning and memory retrieval. In
the former, we train the embedding function on single-scene images, while in
the latter, the function is fine-tuned on multi-scene images. To explore the
effectiveness of fine-tuning, we conduct experiments on freezing the embed-
ding function when learning the memory retrieval module. The comparisons
between PM-Net learned with frozen and trainable embedding functions are
shown in Figure 10. It can be observed that PM-Net with a trainable embed-
ding function shows higher performance on both UCM2MAI and AID2MAI
configurations. The reason could be that sources of single- and multi-scene
images are variant, and fine-tuning can narrow their gaps.

Triplet vs. cross-entropy loss. Triplet loss [77] is known as learning
discriminative representations by minimizing distances between embeddings
of the same class while pushing away those of different classes. To study its
performance in our task, we train the embedding function by replacing Eq. 1
with the following equation:

L(X7) = maz([| fo(X7) = fo(Xpoo) [P = [1£6(X7) = fo(Xiep)I* + 0, 0), (9)

where X - and X, denote positive and negative samples, i.e., images be-
longing to common and different classes, respectively, and « is set as default,
0.5. The trained embedding function is then utilized to extract scene proto-
types and initialize f, in the phase of learning the memory retrieval module.
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respectively. Green bars denote the performance of PM-Net using embedding functions

trained by the triplet loss, and brown bars denote the performance of PM-Net with the
cross-entropy loss as L.

Besides, all the other setups are remained the same. We compare the perfor-
mance of PM-Net using embedding functions trained through different loss
functions in Figure 11. It can be seen that training embedding functions
with the triplet loss leads to decrements of the network performance. This
can be attributed to that limited numbers of positive and negative samples
in each batch can lead to local optimum. More specifically, the size of train-
ing batches is 32, and the number of scenes are 16 and 20 in UCM2MATI and
AID2MAI, respectively. Thus, it is high probably that only a certain number
of scenes are included in one batch, and comprehensively modeling relations
between embeddings of samples from all scenes is infeasible. This also illus-
trates the larger performance decay on UCM2MAI compared to AID2MALI
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4.4.2. The effectiveness of our multi-head attention-based memory retrieval
module

As a key component of the proposed PM-Net, the multi-head attention-
based memory retrieval module is designed to retrieve scene prototypes from
the external memory, and we evaluate its effectiveness by comparing PM-Net
with Mem-N2N. As shown in Table 3, PM-Net outperforms Mem-N2N with
variant embedding functions. Specifically, PM-VGGNet increases the mean
Fy and F} scores by 2.26% and 0.23%, respectively, compared to Mem-N2N-
VGGNet. While taking ResNet as the embedding function, the improvement
can reach 2.58% in the mean F) score. Besides, the highest increments of
mean I and F; scores, 4.96% and 6.52, are achieved by PM-NASNet. These
observations demonstrate that our memory retrieval module plays a key role
in inferring multiple aerial scenes. An explanation could be that compared
to the memory reader in Mem-N2N, our module comprise multiple heads,
and each of them focuses on encoding a specific relevance between the query
image and variant scene prototypes. In this case, more comprehensive scene-
related memories can be used for inferring multiple scene labels. Moreover,
we analyze the influence of the number of heads in the memory retrieval
module. Figure 8 shows mean Fj scores achieved by PM-Net with variant
head numbers on both UCM2MAI and AID2MAI. We can observe that the
network performance is first boosted with an increasing number of heads and
then decreased gradually when the number exceeds 20.

Moreover, we also conduct experiments on directly utilizing relevances
for inferring multiple scene labels. Specifically, we set the number of heads
to 1 and replace the softmax activation in Eq. 4 with the sigmoid function.
Relevances between the query image and scene prototypes can then be in-
terpreted as the existence of each scene. We compare it with our memory
retrieval module on variant backbones, and results are shown in Figure 12.
We can see that utilizing relevances R(X, M) as weights for aggregating
scene prototypes leads to higher network performance.

4.4.3. The benefit of exploiting single-scene training samples

Let’s start with the conclusion: exploiting single-scene images signifi-
cantly contributes to our task. To analyze its benefit, we mainly compare
CNNs* and CNNs. It can be observed that even with identical network
architectures, the performance of CNN is superior to that of CNN*. More
specifically, VGGNet achieves the highest improvement of the mean F; scores,
19.26%, in comparison with VGGNet*. NASNet shows higher performance
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the performance of PM-Net making predictions from relevances and aggregated scene
prototypes, respectively.

in all metrics compered to ResNet*, while other CNNs perform poorly in
only the mean example-based precision with respect to their corresponding
CNNs*. Besides, we visualize features of single-scene images learned by VG-
GNet on UCM and AID datasets via t-SNE, respectively. As shown in Fig-
ure 13, extracted features are discriminative and separable in the embedding
space, which demonstrates the effectiveness of learning the embedding func-
tion on single-scene aerial image datasets. To summarize, except for learning
scene prototypes, single-scene training samples can also benefit multi-label
scene interpretation by pretraining CNNs which are further utilized to ini-
tialize the embedding function.

We exhibit several example predictions of PM-ResNet trained on UCM2MAI
in Table 4. False positives are marked as red, while false negatives are in blue.
As shown in the forth example at the top row, we see that PM-Net can ac-
curately perceive aerial scenes even in complex contexts, but unseen scene
appearance (i.e. apron and runway in snow) can influence its prediction.

4.5. Results on AID2MAI

Table 5 reports numerical results on the AID2MAI configuration. It
can be seen that the performance of PM-Net is superior to all competi-
tors in the mean F score. Compared to Mem-N2N-VGGNet, the proposed
PM-VGGNet increases the mean F; and Fy scores by 6.70% and 7.56%, re-
spectively, while improvements reach 6.07% and 0.64% in comparison with
VGGNet. PM-ResNet achieves the best mean F} score and example-based
precision, 57.42% and 70.62, respectively. With NASNet as the backbone,
exploiting the proposed memory retrieval module contributes to increments
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Figure 13: T-SNE visualization of image representations and scene prototypes learned by
VGGNet on (a) UCM and (b) AID datasets, respectively. Dots in the same color represent
features of images belonging to the same scene, and stars denote scene prototypes.

of 1.03% and 1.71% in mean F; and Fy scores compared to directly learning
NASNet on a small number of multi-scene samples.

We present some example predictions of PM-ResNet in Table 6. As shown
in the top row, PM-ResNet learned with a limited number of annotated
multi-scene images can accurately identify various aerial scenes even image
contextual information is complicated. The bottom row shows some inaccu-
rate predictions. It can be observed that although bridge and parking lot
account for relatively small areas in last two examples at the top row, the
proposed PM-Net can successfully detect them. Similar observations can also
be found in the first and third example at the bottom row that residential
and parking lot are recognized by our network, even they are located at the
corner. In conclusion, quantitative results illustrate the effectiveness of our
network in learning to perform unconstrained multi-scene classification, and
example predictions further demonstrate it.

5. Conclusion

In this paper, we propose a novel multi-scene recognition network, namely
PM-Net, to tackle both the problem of aerial scene classification in the
wild and scarce training samples. To be more specific, our network con-
sists of three key elements: 1) a prototype learning module for encoding
prototype representations of variant aerial scenes, 2) a prototype-inhabiting
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external memory for storing high-level scene prototypes, and 3) a multi-head
attention-based memory retrieval module for retrieving associated scene pro-
totypes from the external memory for recognizing multiple scenes in a query
aerial image. For the purpose of facilitating the progress as well as evalu-
ating our method, we propose a new dataset, MAI dataset, and experiment
with two dataset configurations, UCM2MAI and AID2MALI, based on two
single-scene aerial image datasets, UCM and AID. In scene prototype learn-
ing, we train the embedding function on most of single-scene images as we
aim to simulate the real-life scenario, where massive single-scene samples
can be collected at low cost by resorting to OSM data. To learn memory re-
trieval, our network is fine-tuned on only around 100 training samples from
the MAI dataset. Experimental results on both UCM2MAI and AID2MAI
illustrate that learning and memorizing scene prototypes with our PM-Net
can significantly improve the classification accuracy. The best performance is
achieved by employing ResNet as the embedding function, and the best mean
I score reaches nearly 0.6. We hope that our work can open a new door for
further researches in a more complicated and challenging task, multi-scene
interpretation in single images. Looking into the future, we intend to apply
the proposed network to the recovery of weakly supervised scenes.
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for Multi-scene Recognition in Single Aerial Images
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Abstract—This is the preprint version. To read the final ver-
sion, please go to IEEE Transactions on Geoscience and Remote
Sensing. Aerial scene recognition is a fundamental research
problem in interpreting high-resolution aerial imagery. Over the
past few years, most studies focus on classifying an image into
one scene category, while in real-world scenarios, it is more
often that a single image contains multiple scenes. Therefore,
in this paper, we investigate a more practical yet underexplored
task—multi-scene recognition in single images. To this end, we
create a large-scale dataset, called MultiScene, composed of
100,000 unconstrained high-resolution aerial images. Considering
that manually labeling such images is extremely arduous, we
resort to low-cost annotations from crowdsourcing platforms,
e.g., OpenStreetMap (OSM). However, OSM data might suffer
from incompleteness and incorrectness, which introduce noise
into image labels. To address this issue, we visually inspect
14,000 images and correct their scene labels, yielding a subset
of cleanly-annotated images, named MultiScene-Clean. With it,
we can develop and evaluate deep networks for multi-scene
recognition using clean data. Moreover, we provide crowdsourced
annotations of all images for the purpose of studying network
learning with noisy labels. We conduct experiments with extensive
baseline models on both MultiScene-Clean and MultiScene to
offer benchmarks for multi-scene recognition in single images and
learning from noisy labels for this task, respectively. To facilitate
progress, we make our dataset and trained models available on
https://gitlab.lrz.de/aideo/reasoning/multiscene.

Index Terms—Convolutional neural network (CNN), multi-
scene recognition in single images, crowdsourced annotations,
large-scale aerial image dataset, learning from noisy labels

I. INTRODUCTION

With the recent development of Earth observation tech-
niques, massive aerial imagery is now accessible for a variety
of applications, such as environmental monitoring [1]-[6], ur-
ban planning [7]-[12], land cover and land use mapping [13]-
[16], and disaster assessment [17], [18]. As one of the crucial
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Fig. 1. Examples of images utilized in (a) single-scene and (b) multi-scene
recognition tasks. In (a), each aerial image is assigned one scene label, while
in (b), labels of all present scenes are inferred. In comparison with (b), (a)
might suffer from partial scene understanding, as only one label is predicted
even if there indeed exist multiple scenes in an image. For a clear visualization,
locations of scenes are marked in (b).

steps towards these applications, aerial scene recognition has
been extensively studied in the remote sensing community.
During the last few years, the emergence of deep convolutional
neural networks (CNNs) pushed ahead research in this field,
and enormous achievements [19]-[26] have been obtained.
Albeit successful, most existing scene classification researches
only focus on a specific scenario, where an aerial image is
assumed to include a single scene [27]-[34]. Basically, these
studies regard aerial scene recognition as a single-label clas-
sification problem and learn models on well-cropped single-
scene aerial images (see Fig. 1(a)). However, in practical
applications, an aerial image often contains multiple scenes, as
it is collected overhead and usually has a large coverage (cf.
Fig. 1(b)). We also note that even in public single-scene aerial
image datasets, the coexistence of multiple scenes in a single
image is inevitable, especially in images covering large areas.
For example, as shown in the bottom two images in Fig. 1(a),
although they are assigned single scene labels according to
their central/dominant scenes (i.e., river and train station),
there actually exists more than one scene in each of them.
Hence, in this paper, we aim to tackle a more realistic
yet challenging problem, namely multi-scene recognition in
single aerial images. This task refers to assigning an aerial
image multiple scene labels, and there are no constraints on
image preparations, such as centering dominant scenes and
eliminating clutter scenes. Compared to the conventional scene
recognition task, multi-scene recognition is more arduous
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Fig. 2. Examples of (a) incomplete and (b) incorrect OSM annotations. In
(a), sparse shrubs are not annotated in OSM data, while in (b), the tennis
court is mislabeled as residential.

because 1) images are large-scale and unconstrained, and 2)
all present scenes in an aerial image need to be exhaustively
recognized. Fig. 1(b) shows an example of multi-scene aerial
image and corresponding multiple scene-level labels. We can
see that not only dominant scenes (e.g., residential and wood-
land) but also trivial scenes (e.g., bridge and parking lot) are
annotated, which draws a more comprehensive picture for the
unconstrained image.

However, very few efforts have been deployed to this
problem in the remote sensing community. In order to advance
the progress of multi-scene recognition in single images, we
propose a large-scale Multi-Scene recognition (MultiScene)
dataset, where 100,000 aerial images are collected around the
world. In the phase of data preparation, we note that although
massive high-resolution aerial images can be effortlessly ob-
tained from remote sensing data platforms, such as Google
Earth !, it is extremely time- and labor-consuming to yield
their corresponding multiple scene labels. To alleviate such
annotation burden, in this paper, we resort to crowdsourced
data, e.g., OpenStreetMap > (OSM) annotations, which has
been proven to be successful in generating image-level la-
bels [27], [28], [35] and pixel-wise footprints [12], [36] for
training deep networks. However, we observe that OSM data
might suffer from two common defects, incompleteness and
incorrectness, which could introduce severe noise into image
labels. Fig 2 shows two examples of incorrect OSM annota-
tions, where (a) sparse shrubs are neglected, and (b) the tennis

Uhttps://earth.google.com/web/
Zhttps://www.openstreetmap.org/

court is mislabeled as residential. With this in mind, here
we do not directly use crowdsourced labels as ground truth
data. Instead, we visually inspect 14,000 images and correct
their labels, producing a subset of cleanly-labeled images,
named MultiScene-Clean. It allows developing and evaluating
deep networks for unconstrained multi-scene recognition using
clean data. Moreover, we note that the noisy crowdsourced
data are not completely useless, for example, they can be
used to study network learning with noisy labels for this task.
Therefore, we also provide crowdsourced annotations of all
images.
The contributions of this paper are four-fold:

o Unlike conventional aerial scene recognition where all
images are well-cropped and each of them contains only
one scene-level label, in this paper, we explore a more
practical task—multi-scene recognition in single images.

o We propose a large-scale dataset, namely MultiScene,
consisting of 100,000 unconstrained multi-scene aerial
images, and each is assigned OSM labels. We visually
inspect 14,000 images and correct their labels, yielding a
subset of cleanly-labeled images.

o The proposed dataset provides not only ground truth data
but also crowdsourced labels, which enables researches
in learning from enormous noisy labels for our task.

« We extensively evaluate commonly-used classification
networks on both MultiScene-Clean and MultiScene and
provide benchmarks for recognizing multiple scenes in
single images and learning from noisy labels for this task,
respectively.

The remaining sections of this paper are organized as
follows. Section II reviews studies in aerial single-scene classi-
fication and multi-label object classification. Section III briefly
recalls existing scene datasets and delineates the proposed
dataset. Experimental configurations and results are exhibited
in Section IV, and Section V draws a conclusion.

II. RELATED WORK

This section briefly reviews related works in two fields:
aerial single-scene classification and multi-label object recog-
nition.

A. Aerial Single-scene Classification

Aerial single-scene classification refers to categorize an
aerial image into a single scene class. Early researches pro-
pose to construct scene representations with variant low-level
features, e.g., local structures [41], [42], color attributes [43],
[44], and texture information [45], [46]. Concerning that
low-level features fail to comprehensively depict complex
scenes, mid-level algorithms, such as Bag-of-Visual-Words
(BoVW) [47], [48] and topic models [49], [50], are devised
to encode local features (so-called “visual words”) into more
holistic mid-level scene representations for the classification
task. However, these methods show limited performance in
recognizing scenes of high diversity due to their dependency
on hand-crafted features.
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TABLE I
COMPARISON WITH EXISTING AERIAL SCENE DATASETS FROM VARIOUS PERSPECTIVES.
Dataset # images spatial resolutions # scenes # labels per image crowdsourced label  Year
UC-Merced [37] 2,100 0.3 m/pixel 21 1 X 2010
WHU20 [38] 5,000 0.3-7.4 m/pixel 20 1 X 2015
RSSCN7 [39] 2,800 0.2-1.4 m/pixel 7 1 X 2015
AID [27] 10,000 0.5-8 m/pixel 30 1 X 2017
NWPU-RESISC45 [40] 31,500 0.2-30 m/pixel 45 1 X 2017
MultiScene (Ours) 100,000 0.3-0.6 m/pixel 36 1-13 v 2021

Recently, the emergence of deep CNNs brings immense ad-
vancements to the community, and many achievements [19]-
[34] have been obtained in the field of aerial single-scene clas-
sification. These deep networks have hierarchical architectures,
where convolutional and max-pooling layers are periodically
interleaved for learning high-level features of intricate scenes.
With layers going deeper, the learned features are more
abstract and supposed to contain richer semantic information,
which is crucial for judicious decisions. A popular trend of
deep learning algorithms in single-scene classification is to
take a CNN as the backbone and introduce well-designed mod-
ules for further enhancing the feature efficiency. For instance,
Bi et al. [31] propose to learn multiple instances from feature
maps extracted by a densely-connected CNN and integrate
them into bag-level features for single-scene classification. Li
et al. [51] propose a key region capturing method to learn
class-specific features and retain global information for infer-
ring scene labels. To leverage features of variant levels, feature
aggregation plays a key role in single-scene classification. Lu
et al. [52] fuses features learned by the last three blocks and the
second fully-connected layer of VGG-16, and Cao et al. [53]
designs a non-parametric self-attention layer to enhance spatial
and channel responses of fused features for the final prediction.
In [20], the authors develop a gated bidirectional network
for aggregating features extracted by different convolutional
layers with a gated function in both top-down and bottom-
up directions. Besides, exploiting supplementary data, such
as geo-tagged audios and multi-temporal images, has been a
new research direction. Hu et al. [19] propose to predict scene
categories by transferring sound event knowledge learned from
sound-image pairs. In [25], the authors propose a two-branch
network to learn deep features of bi-temporal images and
fuse them through a CorrFusion module for aerial scene
classification. Our literature review demonstrates that most of
the existing researches assume that an aerial image includes
only one scene and focus on well-cropped single-scene aerial
images. Hence, these studies tend to regard entities present
in an image as compositions of a scene, while in multi-scene
recognition, this would trigger networks to learn erroneous
feature representations. However, very few efforts have been
deployed to explore multi-scene recognition in the remote
sensing community.

B. Multi-label Object Classification

Multi-label object classification refers to assigning an aerial
image multiple object-level labels, such as car, tree, and
building. Similar to our work, these studies aim to provide

a holistic understanding of aerial images, but from the per-
spective of object. Early attempts [54], [S5] follow the idea
of simply combining a deep CNN with a post-processing
approach for identifying multiple objects in an aerial image.
In [54], the authors feed outputs of a CNN into a customized
thresholding operation for inferring multiple object labels,
while in [55], a conditional random field (CRF) is utilized
as the post-processing model. In recent literature, more efforts
are deployed to endow deep neural networks with the capacity
of reasoning about relations among various objects for more
accurate predictions. In [56], the authors propose an end-to-
end network comprising a CNN and a long short-term mem-
ory (LSTM) network that is responsible for modeling label
dependencies through its recurrent units for multi-label object
classification. [57] exploits a bidirectional LSTM network to
learn spatial relations among all patches in an image for
the final prediction. In [58], the authors propose a relational
reasoning network module to model label dependencies and
gains better classification results. Instead of encoding label
relations, [59] divides an aerial image into several patches
with the same size and models spatial relationships among
them for multi-label object interpretation. Compared to these
researches, our task is more challenging, because compared to
object, the concept of scene is more abstract and intricate.

III. MULTISCENE DATASET FOR MULTI-SCENE
RECOGNITION IN SINGLE AERIAL IMAGES

This section first reviews existing single-scene aerial image
datasets and then delineates the proposed dataset.

A. Existing Single-scene Aerial Image Dataset

During the last decades, various aerial image datasets are
published for single-scene classification, and here we briefly
review several commonly used ones.

o UC-Merced [37]: The UC-Merced dataset is composed of
2,100 images collected from the United States Geological
Survey (USGS) National Map, and each of them is
categorized into one of 21 scene classes: overpass, golf
course, river, harbor, beach, building, airplane, freeway,
intersection, medium residential, runway, agricultural,
storage tank, parking lot, forest, sparse residential, cha-
parral, tennis courts, dense residential, baseball diamond,
and mobile home park. The number of images per scene
is evenly defined as 100, and only cities in the United
States are covered in data acquisition. The size of each
image is 256 x 256 pixels, and the spatial resolution is one
foot. In [60], the authors focus on the task of recognizing
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Fig. 3. Coordinate distributions and examples of multi-scene aerial images in our dataset. Red dots denote images with both crowdsourced and clean labels,

and cyan dots represent images with only crowdsourced scene labels.

multiple objects in an image and relabel the UC-Merced
dataset, yielding a multi-label dataset. In this dataset,
2,100 images are relabeled, and each is assigned one
or several labels from 17 newly defined object classes:
airplane, sand, pavement, building, car, chaparral, court,
tree, dock, tank, water, grass, mobile home, ship, bare
soil, sea, and field.

o WHU20 [38]: The WHU20 dataset is an extended version
of the WHU-RS dataset that was originally proposed
in [61]. This dataset expands numbers of aerial images
and scene classes from 950 to 5,000 and from 12 to
20, respectively. For each scene category, more than 200
images with a size of 600 x 600 pixels are collected, and
their spatial resolutions range from 0.26 m/pixel to 7.44
m/pixel.

e RSSCN7 [39]: The RSSCN7 dataset is a collection of
2,800 high-resolution images each belonging to one of
7 scene categories: grassland, forest, farmland, parking
lot, river/lake, industrial region, and residential region.
400 images with different spatial resolutions are cropped
from Google Earth imagery for each scene, and the image
size is 400 x 400 pixels.

o AID [27]: The AID dataset is a large-scale benchmark
consisting of 10,000 aerial images and 30 scene types: air-
port, pond, forest, baseball field, resort, bare land, center,
beach, bridge, commercial, desert, storage tanks, farm-
land, industrial, mountain, park, parking, playground,
viaduct, church, railway station, river, school, meadow,
sparse residential, dense residential, medium residential,
square, stadium, and port. Google Earth is exploited to
acquire image samples, and the spatial resolution of each
sample varies from 0.5 m/pixel to 8 m/pixel. The size of
images is 600 x 600 pixels, and the number of images
for each class ranges from 220 to 420.

o NWPU-RESISC45 [40]: The NWPU-RESISC45 dataset
contains 31,500 high-resolution images and each is as-

signed with one of 45 scene labels. For each scene, 700
images with a size of 256 x 256 pixels are acquired from
Google Earth imagery, and their spatial resolutions vary
from 0.2 m/pixel to 30 m/pixel.

In addition, we note that BigEarthNet [62] is a large-
scale dataset for multi-label learning, where 590,326 Sentinel-
2 images are captured over the European Union, and their
spatial resolutions range from 10 m/pixel to 60 m/pixel. Since
BigEarthNet focuses on land covers instead of scenes, we do
not specify it here. Table I presents an overview of public
high-resolution aerial image datasets from the perspectives
of dataset scales, image resolutions, scene categories, and
annotations.

B. MultiScene for Multi-scene Recognition

Although there are already variant datasets for aerial scene
recognition, most of them can only be used for single-scene
classification. In this paper, we aim to take a step towards
a more general scenario, multi-scene recognition in single
images, and produce the MultiScene dataset.

To be more specific, we collect 100,000 high-resolution
aerial images from Google Earth imagery, which cover six
continents, Europe, Asia, North America, South America,
Africa, and Oceania, and eleven countries including Germany,
France, Italy, England, Spain, Poland, Japan, the United States,
Brazil, South Africa, and Australia (cf. Fig. 3). This can
ensure high intra-class diversity, as different scene appearances
resulted from different cultural regions are covered. The spatial
resolution of each image ranges from 0.3 m/pixel to 0.6
m/pixel, and the spatial size of images is 512 x 512 pixels. In
contrast to single-scene image datasets [27], [37]-[39], we put
no constraints on the location and area of the dominant/trivial
scene in an image during the data collection process. Some
example multi-scene images are exhibited in Fig. 4. In total,
36 scene categories are defined: apron, baseball field, bas-
ketball field, beach, bridge, cemetery, commercial, farmland,
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park lake/pond
lake/pond storage tanks
residential parking lot
i basketball field greenhouse sea
pier
park parking lot works
lake/pond commercial parking lot
residential greenhouse sparse shrub
basketball field § storage tanks
farmland
woodland stadium park
solar farm tennis court B stadium
wind turbine baseball field residential
farmland stadium 8 park
woodland parking lot & stadium
solar farm soccer field d residential
tennis court parking lot
baseball field commercial

EN

Fig. 4. Example multi-scene aerial images with their crowdsourced and clean annotations in the MultiScene dataset.

woodland, golf course, greenhouse, helipad, lake/pond, oil
field, orchard, parking lot, park, pier, port, quarry, railway,
residential, river, roundabout, runway, soccer field, solar farm,
sparse shrub, stadium, storage tanks, tennis court, train station,
wastewater, plant, wind turbine, works, and sea.

To obtain crowdsourced annotations, we first localize each
image in OSM with coordinates of its four corners. After-
wards, we parse properties of scenes present in the corre-
sponding region and label images accordingly. In this way,
crowdsourced annotations of all aerial images can be auto-
matically yielded at a very low cost compared to conventional
manual labeling. However, these almost free annotations might
suffer from noise as aforementioned in Section I, and the
performance of networks directly trained on them could be
degraded. Therefore, we visually inspect 14,000 images from
all six continents and correct their labels, yielding a subset,
MultiScene-Clean. Fig. 3 shows the coordinate distribution of
all images, and the number of samples associated with each
scene is present in Fig. 5. Compared to other scene recognition
datasets (cf. Table I), our dataset is featured by its manifold
labels per image and the available crowdsourced annotations.
Fig. 6 further shows the number of images associated with
different numbers of scenes.

C. Challenges

Compared to existing aerial scene datasets, our dataset
brings more challenges to the field of scene interpretation from
the following three perspectives:

« Images are unconstrained and large-scale, and thus scenes
are likely to be incomplete and trivial, which makes
recognition more difficult.

o The long-tail sample distribution (see Fig. 5) poses a
challenge of learning unbiased models on an imbalanced
dataset.

« We gather images from different cultural regions, which
results in a high intra-class variation.

IV. EXPERIMENTS

A. Experimental Setup

Data Configuration. We evaluate the performance of
existing models on both MultiScene-Clean and MultiScene
datasets. As to the former, we use 7,000 cleanly labeled images
to train and validate networks, and the remaining images are
utilized to test networks. For the latter, we leverage the same
test set but train deep neural networks on the other 93,000
images with only crowdsourced annotations.

Evaluation. For a comprehensive evaluation, we measure
the performance of baseline models with class-based, example-
based, and overall metrics. Let L and N be numbers of classes
and examples®, these metrics are calculated as follows.

o Class-based Metrics: Mean class-based precision (mCP),
recall (mCR), F; (mCF;) score, and per-class average
precision (AP) are calculated for measuring the per-
formance of networks from the perspective of class.
Specifically, mCP, mCR, and mCF; score are computed
as:

L L

1 TP, TP,
cP=-S"_"°¢  pCR=-S"__""° _
m LZTPC+FPc’m LZTPC+FNC’

c=1 c=1

L
1 TP
mCF, = - > — ,
= TP, + 4 (FP, + FN,)

ey
where TP., FN., and FP. represent numbers of true
positives, false negatives, and false positives with respect
to the c-th class, respectively. As to the per-class AP,
we first rank all examples according to the predicted
probability of the c-th class in each of them. Then

3 An example indicates an image which has multiple labels.
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Fig. 5. Sample distributions of all scene categories in our dataset. Each cyan bar indicates the number of images assigned only OSM labels with respect to
each scene category, and red bars represent numbers of images with both OSM and clean labels.
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Fig. 6. The number of images associated with different numbers of scenes.
Y-axis indicates the number of scenes, and X-axis represents the number of
images. The legend is the same as that in Fig. 5.

we calculate the corresponding AP with the following
formula:

1 Y TP, @k

AP = — _—
N, — TP.Qk + FP.Qk

x relQk, 2)

where N, denotes the number of examples including the
c-th class, and TP.@Qk and FP.QFk represent numbers of
true and false positives in top-k examples, respectively.
Notably, TP.@Qk and FP.Qk are equivalent to TP, and
FP., when k equals to N. rel@k denotes the relevance
between the k-th example and the c-th class, and it is set
to 0/1 when the c-th class is included/excluded. Besides,
the mean average precision (mAP) can be computed by
averaging APs for all categories.

Example-based Metrics: Mean example-based precision
(mEP), recall (mER), and F; (mEF;) score are computed
to validate networks from the perspective of example with

the following equations:

N N
1 TP, 1 TP,
EP=—S - %  pER=_S"_ "k
m N;TPHFPk’m N;TPHFNk’
N
1 TP
mEF1 = k

N & TPj, + 5(FPy + FNy)’

3
where TPy, FPj, and FNj denote numbers of true pos-
itives, false positives, and false negatives in the k-th
example.

Overall Metrics: Overall precision (OP), recall (OR), and
F; (OF;) score can be used to measure the performance
of models from a more holistic perspective, and they are
calculated as:
TP
L TP TP
TP 4 FP TP + FN
TP
OFl = 1 )
TP + 5 (FP 4 FN)
where TP, FP, and FN are counted based on predictions
of all scenes and examples.

op
)

B. Baselines

To provide comprehensive benchmarks, we evaluate the
performance of extensive popular deep neural networks. Since
they were originally designed for single-label classification,
we substitute sigmoid functions for their softmax activations
to predict multiple scene labels that are encoded into multi-hot
binary sequences. Besides, several classical machine learning

algorithms are also evaluated. In total, 22 models are tested on

both MultiScene-Clean and MultiScene datasets, and a brief
review is as follows.

SVM [63]: Support vector machine (SVM) aims to learn
one or several hyperplanes for separating samples of
different classes with the largest margin. Usually, the
hyperplanes are constructed in a high dimensional space,
and can be learned directly (Linear SVM) or through
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TABLE IT

NUMERICAL RESULTS OF BASELINE MODELS ON THE MULTISCENE-CLEAN DATASET (%). MODELS ARE TRAINED AND TESTED ON CLEANLY-LABELD

IMAGES, AND THE BEST SCORES ARE SHOWN IN BOLD.

Model mAP mCP mCR mCF;| mEP mER mEF;| OP OR OF,
SVM 14.9 19.6 8.4 8.6 62.2 32.8 41.1 66.9 322 43.5
RF 15.6 254 8.7 9.5 64.6 32.5 41.4 70.9 32.1 44.2
XGBOOST 16.9 34.1 11.2 12.8 67.0 374 45.8 69.6 36.5 47.9
VGG-16 56.5 63.3 47.9 53.6 74.9 64.3 67.0 73.6 63.1 67.9
VGG-19 56.4 62.9 47.7 53.3 74.8 64.1 66.8 73.5 62.7 67.7
Inception-V3 53.5 65.0 40.8 48.5 74.2 59.9 63.9 73.0 58.6 65.0
ResNet-50 62.0 74.8 45.9 55.1 79.7 62.7 67.9 79.0 61.4 69.1
ResNet-101 63.0 75.9 46.6 55.8 79.9 64.3 69.1 79.2 63.1 70.3
ResNet-152 63.8 74.9 49.1 57.7 80.8 64.0 69.2 80.1 62.8 704
SqueezeNet 46.3 58.1 36.8 43.5 71.3 58.0 61.3 70.0 56.9 62.7
MobileNet-V2 58.8 70.9 44.8 53.1 77.6 62.7 67.0 76.6 61.6 68.3
ShuffleNet-V2 50.7 61.8 38.1 45.7 73.8 58.2 62.5 73.0 57.0 64.0
DenseNet-121 62.2 74.6 45.1 54.4 79.5 61.8 67.3 79.1 60.6 68.6
DenseNet-169 63.2 76.7 45.8 55.3 80.4 63.4 68.6 79.6 62.3 69.9
ResNeXt-50 63.4 773 45.0 54.2 78.5 64.3 68.6 77.8 63.2 69.8
ResNeXt-101 64.8 76.5 48.6 57.3 79.3 66.6 70.2 78.5 65.4 71.3
MnasNet 53.8 61.8 42.9 49.9 73.0 59.4 63.0 72.1 58.1 64.3
KFBNet 58.8 68.8 45.2 53.3 77.9 64.2 68.1 77.3 63.0 69.4
FACNN 56.5 60.3 48.7 52.6 73.1 65.3 66.8 71.6 64.1 67.7
SAFF 61.8 72.5 48.1 56.7 794 63.9 68.6 78.7 62.8 69.9
LR-VGG-16 58.1 67.7 46.7 54.2 773 64.6 68.0 76.2 63.5 69.2
LR-ResNet-50 63.1 68.1 53.1 59.0 76.7 67.6 69.7 75.3 66.5 70.6

kernel functions (Nonlinear SVM). In our experiments,
we select the latter and use a radial basis function (RBF)
kernel [64] to learn SVM.

RF [65]: Random forest (RF) is an ensemble of decision
trees, which are trained with random subspaces of image
features and make final predictions through the majority
voting. The number of decision trees is set to 200 in our
experiments.

XGBOOST: XGBOOST* is a computationally efficient
implementation of gradient-boosted trees [66] that op-
timizes tree ensembles (e.g., an ensemble of decision
trees) through successive learning steps [67]. In each
step, the existing trees are fixed, and a new tree is added
and optimized with objective functions. Considering the
difficulty of our task, we set the number of trees to 200
for training XGBOOST on both datasets.

VGGNet [68]: VGGNet utilizes five convolutional blocks
and three fully-connected layers to extract high-level
features for image classification. Each block has multiple
stacked convolutional layers and ends with one max-
pooling layer. The size of convolutional filters is 3x 3, and
the stride of max-pooling layers is 2. In our experiments,
a l6-layer VGGNet (VGG-16) and a 19-layer VGGNet
(VGG-19) are trained on our dataset.

Inception networks [69]-[72]: Inception networks are
characterized by their wide modules, where convolutional
filters of variant sizes and max-pooling operators are
jointly employed to learn diverse features. Besides, a
bottleneck architecture made of 1 x 1 convolutions is
introduced to mitigate the boosted computational cost
resulting from heavy inception modules. In Table II and
III, we report the performance of Inception-v3 [71] in
multi-scene recognition.

4https:/xgboost.readthedocs.io/en/latest/tutorials/model.html

ResNet [73]: ResNet aims to address the degradation
problem by learning residual mappings with shortcut con-
nections. By doing so, ResNet can go much deeper than
plain CNNs and achieve outstanding performance in not
only image classification but also semantic segmentation
and object detection tasks. In our experiments, we eval-
uate a 50-layer ResNet (ResNet-50), a 101-layer ResNet
(ResNet-101), and a 152-layer ResNet (ResNet-152) on
the proposed dataset. Notably, residual blocks in these
deep ResNets are modified into bottleneck architectures
for reducing the computational burden.

SqueezeNet [74]: SqueezeNet focuses on preserving net-
work performance with fewer parameters. To achieve this,
most of 3 x 3 convolutional filters are replaced with 1 x 1
filters, and features are squeezed in the channel dimension
before fed into the remaining 3 x 3 filters. In addition,
bypass connections are introduced to features of the
same size for improving the classification performance.
Experimental results of SqueezeNet on our dataset are
reported in Section IV-D and IV-D2.

MobileNet [75]: MobileNet is a light-weight deep neural
network, which is applicable on mobile devices with
restricted computational sources. The network is designed
in a streamlined architecture, and depthwise separable
convolutions play a significant role in increasing com-
putational efficiency. Specifically, such convolutions are
implemented by factorizing standard convolutions into
depthwise and pointwise convolutions. The former is
conducted on each channel, and the latter aggregates
channel-wise outputs via 1 x 1 convolutions. To fur-
ther reduce the computational cost, two hyperparameters,
width multiplier o and resolution multiplier /3, are de-
signed to shrink feature channels and input resolutions,
respectively. In the advanced variation of MobileNet, i.e.,
MobileNet-V2 [76], inverted residual connections and



€LY
§'9
659
(2%
<19
979
L9
999
9°L9
$'99
8'8¢
019
ey
T'IL
1'89
689
9'6S
%Y
6'vS

%

e

e

687 6'SS L'8Y
6'SY 0TS 6'¢h
99 9vS 6'1v
Yor 19y ¢ce
ey €Ly 9'1¢
Y'ee 9Ty 8'CE
§'CS L'8S v'vS
L'vS 695 T0S
Tes 988 v'IS
0S ¥'9S v'LY
¥'0C ¥'9¢ T0¢
S8y I'Ly L'OV
081 89¢C 8CC
88y €°LS €IS
TLy 8°SS 99
€08 S¥S L9y
SYy 69 S've
€0S 0°Ly 9°LE
9IS 6°SY §°6¢
80 9¢ LT
80 9¢ LT

Iss
0
%Y
8'0S
914
vy
1439
8'€S
EA%Y
%Y
S'LE
%14
6'6¢
TLS
(2%
0°ss
9vy
I'6v
v'ov

€79
'8¢
£€'€9
¥'9¢
€09
6'SS
£'¢9
(x4
[
919
€LS
¥'09
Tes
879
129
6’19
9°9¢
8¢S
L'6S
6'C¢
9T

ey
€L
8'6¢
¥'ee
'se
£ee
e
60y
Iy
1'6¢
0'1e
£Pe
LT
0'ly
0oy
£ov
I'te
43
e
601
901

SoL
L'29
€89
S¥9
L'v9
0°6S
0L
L'89
¥'69
I'L9
¥'6S
I't9
LSy
LoL
00L
L'LY
L'6S
€79
919

86

S'6

0°¢L
TIL
V'L
¥'89
L'89
799
ToL
L9L
V'SL
6'¢cL
$'99
8'L9
08¢
L'LL
V'LL
8VL
7'S9
989
L'89

(44

Le

L'ST 08 S6 LE

£¢e9
§'8¢
129
%Y
¢'8¢
9IS
$99
Sv9
6°C9
€79
9°0¢
009
(%
1S9
L'29
Y9
6'LY
¥'9¢
9°¢¢
8¢l
9°¢l
4!

114
40!
I'LT
9Cl1
1ol
I'81
£0¢
8'¢C
Y'1C
£'6C
0TI
1'81
§oc
£0¢
6'0C
Lve
sel
Ll
06l

90

90

8°9L
I'eL
8VL
'L
I'eL
$'69
1'9L
L'LL
1'8L
L'LL
6’19
TiL
8'9¢
€6L
9LL
TLL
S0L
'L
LeL

8°€8 Ty
§C8 9'9¢
0¢8 ¥y
818 L'IE
T8 9'LE
6'8L L'0C
I'v8 9'Sy
7'e8 €1y
Sv8 9ty
G'e8 6'LE
S08 v'vl
618 SCe
V'LL 9°C1
6'€8 v'ev
T8 Sy
£¢e8 L'6E
7’18 861
908 08¢
918 6'8¢
89 ¢V
L9 SY
§09 Sv

808
LvL
8°9L
S'0L
I'sL
6'0L
6C8
918
18
608
S'L9
S'8L
9°LS
08
08
V6L
8'89
I'L9
00L
8¢l
601

8L
€9L
SvL
¥'69
¥'89
769
€78
18
818
0'6L
09
€YL
a4
IeL
LeL
€LL
8'L9
['0L
TiL

e

I'e

1'¢

0S-1ONSY-I'T
91-DDA-YT
J4VS
NNOVA
PN
JONSBUN
T0T-3X3NSY
0S-IXANSY
691-1NBsu(g
[CI-19NPsuaq
CATRNRPINYS
CTARNPRIIQON
JoNozoonbg
CST-1RNSY
TOT-1ONSY
0S-1ONSI

¢ A-uondoouy
61-DDA
91-DDA
LSO0dDX
2k

WAS

S

2, O
0, ]
LIS

T'LL 60
0L 011
89L 6’1
8CL 8%
L'SL €9
oL L0
teL ¢'1
€SL 96
L'8L €F
L'SL 6T
0¢9 ¥0
8¢L 91
659 L0
€8L ¥0
8'LL 60
89L S0
€89 S0
v'eL 9T
0cL 61
ST 10
10T 10

66 10

F L

>
N

&

PPOIA

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

*a’104 NI NMOHS d¥V SV Lsad aH], (%) LASVIVA NVAT)-ANIISILINIAN FHL NO SdV 40 SNOSTIVAINOD)

III 471dVL



SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 9

TABLE IV
EXAMPLE PREDICTIONS OF RESNEXT-101 ON THE MULTISCENE-CLEAN DATASET.

Multi-scene Aerial
Images in the
MultiScene-Clean
dataset

[

farmland, woodland,
orchard, residential,
and sparse shrub

bridge, parking lot,
river, roundabout,
and residential

bridge, parking lot,
river, roundabout,
and residential

woodland, lake/pond,

Truth
Ground Truths and wastewater plant

lake/pond and quarry

farmland, woodland,
orchard, residential,
and sparse shrub

bridge, parking lot,
river, roundabout,
and residential

bridge, parking lot,
river, roundabout,
and residential

woodland, lake/pond,

Predictions
and wastewater plant

lake/pond and quarry

Multi-scene Aerial
Images in the
MultiScene-Clean
dataset

commercial, parking
lot, park, railway,
residential, train
station, and works

commercial,
farmland, parking lot,
and residential

Ground Truths

farmland, woodland,

baseball field,
basketball field,
lake/pond, parking
lot, residential,
soccer field, and
tennis court

bridge, commercial,
parking lot, park,
residential, river,
roundabout, and solar
farm

sparse shrub

commercial,
farmland, woodland,
parking lot, and
residential

commercial, parking
lot, park, railway,
residential, train
station, and works

Predictions

farmland, woodland,
lake/pond, and sparse

baseball field,
baseketball field,
lake/pond, parking
lot, residential,
soccer field, and
tennis court

bridge, commercial,
lake/pond, parking
lot, park, river, solar

shrub farm, and residential

linear bottlenecks are developed to improve the network
performance. In our experiments, we train MobileNet-V2
and set both o and 3 as the default value, 1.

ShuffleNet [77]: ShuffleNet improves computational ef-
ficiency by utilizing pointwise group convolutions and
channel shuffle. Specifically, the former divides feature
maps into several groups and conducts 1 x 1 convolutions
on each group independently. The latter rearranges feature
channels for enabling information to flow across channels
belonging to different groups. Besides, element-wise ad-
dition, which is often used in a residual block, is replaced
with concatenation for enlarging channel dimension at a
low computational cost. In ShuffleNet-V2 [78], features
are grouped by channel split, and pointwise group con-
volutions are discarded. As a consequence, two feature
groups are yielded and fed into two branches, of which
one is an identity mapping and the other is a set of
convolutions. Afterwards, outputs are concatenated and
shuffled along the channel dimension. In our experiments,
we evaluate the performance of ShuffleNet-V2 on our
dataset.

DenseNet [79]: DenseNet proposes to enhance infor-
mation flow by directly connecting each layer to all
subsequent layers with equivalent feature-map sizes. To

Purple predictions indicate false negatives, while blue predictions are false positives.

preserve information learned by proceeding layers, con-
catenation is employed to combine features from vari-
ous layers. By reusing feature maps throughout entire
networks, DenseNet can learn compact internal repre-
sentations for visual recognition tasks. Two variations,
a 121-layer DenseNet (DenseNet-121) and a 169-layer
DenseNet (DenseNet-169), are tested.

ResNeXt [80]: ResNeXt learns residuals with aggre-
gated residual transformations but not a stack of con-
volutional layers (e.g., ResNet). The aggregated residual
transformation is implemented by first slicing features
into low-dimensional embeddings and then conducting
convolutions on them. Afterwards, outputs are aggregated
with element-wise addition. With this design, ResNeXt
outperforms its ResNet counterpart on ImageNet-5K [80]
and COCO [81] datasets. We test a 50-layer ResNext
(ResNeXt-50) and a 101-layer (ResNeXt-101) in our
experiments.

o MnasNet [82]: MnasNet architectures are automatically

learned on target datasets through a mobile neural ar-
chitecture search (MNAS) algorithm [82]. Compared to
conventional NAS algorithms [83], MNAS takes not only
classification accuracy but also model latency into consid-
eration and is executed on mobile phones for measuring



SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

10

TABLE V
NUMERICAL RESULTS OF BASELINE MODELS ON THE MULTISCENE DATASET (%). MODELS ARE TRAINED ON IMAGES WITH NOISY CROWDSOURCED
ANNOTATIONS AND TESTED ON CLEANLY-LABELED IMAGES. THE BEST SCORES ARE SHOWN IN BOLD.

Model mAP mCP mCR mCF;| mEP mER mEF;| OP OR OF;
SVM 14.7 24.7 4.1 5.4 51.4 15.7 23.1 1.7 15.5 25.8
RF 15.1 49.7 4.4 6.1 55.4 16.4 343 78.7 15.8 26.3
XGBOOST 18.4 54.6 10.6 14.9 62.0 26.7 35.1 70.4 25.5 374
VGG-16 63.4 71.0 46.9 54.1 78.4 51.6 59.3 79.3 49.6 61.0
VGG-19 59.8 68.9 47.2 54.1 75.5 52.2 58.9 75.1 50.2 60.2
Inception-V3 65.8 74.1 50.8 58.5 79.1 53.8 61.2 79.5 51.9 62.8
ResNet-50 63.9 73.7 47.7 55.9 78.3 52.5 60.0 78.5 50.7 61.6
ResNet-101 63.4 73.0 47.5 55.5 77.1 52.5 59.7 712 50.6 61.2
ResNet-152 62.8 73.2 47.6 55.7 76.2 53.1 59.9 76.5 51.3 61.4
SqueezeNet 61.4 74.4 41.1 50.5 78.9 47.7 56.4 80.7 45.9 585
MobileNet-V2 65.5 723 48.4 56.0 79.6 54.6 62.0 80.1 52.8 63.6
ShuffleNet-V2 65.1 74.6 46.7 55.1 81.7 51.0 59.9 829 49.0 61.6
DenseNet-121 67.5 71.0 49.4 58.2 82.2 54.4 62.6 82.8 523 64.1
DenseNet-169 64.2 713 53.3 59.3 772 55.7 62.0 77.1 53.9 63.4
ResNeXt-50 63.9 73.6 49.0 56.9 71.5 52.6 59.8 77.6 50.7 61.3
ResNeXt-101 60.8 68.5 47.4 53.7 73.8 51.2 57.7 74.0 49.5 59.3
MnasNet 58.1 74.1 31.0 40.4 75.0 38.0 47.6 80.4 36.0 49.7
KFBNet 67.1 71.7 46.2 54.3 80.2 54.0 61.7 81.1 523 63.6
FACNN 65.2 73.9 47.6 55.6 78.9 53.9 61.1 80.0 52.1 63.1
SAFF 64.8 74.0 47.4 55.3 80.9 51.2 59.8 81.8 49.4 61.6
LR-VGG-16 67.8 76.0 48.4 56.1 80.5 52.1 60.5 81.3 50.3 62.2
LR-ResNet-50 65.5 71.2 51.6 57.9 79.2 53.1 60.7 79.4 51.2 62.3

real-world inference latency. As a consequence, MnasNet
searched on target datasets is expected to achieve a good
trade-off between accuracy and latency. To control the
model size, a depth multiplier is designed for scaling the
number of channels in each layer. In our experiments,
the depth multiplier is set to 1, and the best-performing
MnasNet searched on the ImageNet dataset [84] is chosen
to perform multi-scene recognition in the wild.

o KFBNet [51]: KFBNet exploits a key region capturing
method namely key filter bank (KFB) for aerial image
scene classification. The proposed KFB is composed of
two streams: a global stream (G-Stream) and a key stream
(K-Stream). The former predicts labels using features
learned by the last block of a CNN, while the latter
highlights key features in both spatial and channel dimen-
sions for inferring scene categories. Finally, predictions
made by the two streams are merged via an element-
wise addition as the final decision. We take VGG-16 as
the backbone and report numerical results in Table II, III,
and V.

e FACNN [52]: FACNN is a scene classification network
composed of a CNN backbone and a Feature Aggre-
gation module. In the latter, features extracted by the
last three blocks of VGG-16 are aggregated through
pooling operations and 1 x 1 convolutions. Afterwards,
they are concatenated with outputs of the second fully-
connected layer of VGG-16 to form discriminative scene
representations for the final prediction.

e SAFF [53]: SAFF proposes a non-parametric self-
attention layer for enhancing spatial and channel re-
sponses of feature maps. Specifically, features extracted
by the last three blocks of a pre-trained CNN (e.g., VGG-
16) are fused and fed into the proposed self-attention
layer. In this layer, spatial- and channel-wise weightings
are conducted to emphasize the importance of locations

of salient objects and channels with infrequently occur-
ring features, respectively. Principal component analysis
(PCA) whitening is also introduced to reduce the infor-
mation redundancy and squash channels. However, since
this operation frequently fails the network training, we
replace it with a learnable fully-connected layer. Besides,
VGG-16 is selected as the backbone in our experiments.
e LR-CNN [58]: LR-CNN is a multi-label classification
network, which consists of three elements: a class-wise
feature extraction module, an attentional region extraction
module, and a relational reasoning module. Specifically,
the first module learns deep features with respect to each
category from the input images. Afterwards, the second
module extracts attentional regions of class-wise features,
which are eventually leveraged to reason about relations
between different objects for inferring their existences
through the third module. In our experiments, we validate
LR-VGG-16 and LR-ResNet-50, where VGG-16 and
ResNet-50 are taken as backbones, respectively.

C. Training Details

Before training SVM, RF, and XGBOOST, we use his-
togram of oriented gradient (HOG) [85] and local binary pat-
tern (LBP) [86] as visual features as recommended in [87]. The
size of each cell is set to 32x 32 pixels for HOG, and the radius
is defined as 16 pixels for LBP. We use Scipy to implement
these machine learning classifiers and apply them to multi-
scene recognition using the function MultiOutputClassifier.
As to baseline classification neural networks, we initialize
them with weights pre-trained on the ImageNet dataset and
fine-tune them on the proposed multi-scene image dataset.
The loss is defined as binary cross-entropy, and stochastic

Shttps://scikit-learn.org/stable/modules/generated/sklearn. multioutput. Multi-
OutputClassifier.html
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respectively. For each network, the left four bars represent class-based scores, mAPs and CF;, while the right four bars indicate EF; and OF; scores.

gradient descent (SGD) with momentum [88] is selected as
the optimizer. To accelerate the network convergence, the
momentum is set to a large value, 0.9. Besides, the initial
learning rate and weight decay are set to 0.02 and le — 4,
respectively. All deep networks are implemented on Pytorch
and validated on one NVIDIA Tesla V100-SXM2 32GB GPU.
For experiments on both MultiScene-Clean and MultiScene,
we train networks for 87k and 581k iterations, respectively,
and the size of each training batch is set to 16 for both
versions.

D. Experimental Results across Different Tasks

1) Multi-scene Recognition with Cleanly-labeled Data: To
evaluate baselines for our task, we conduct experiments on
the MultiScene-Clean dataset and report quantitative results
in Table II. It can be seen that ResNeXt-101 achieves the
best mAP (64.8%), mEF; (70.2%), and OF; score (71.3%),
which demonstrate its high performance and robustness in
this task from almost all perspectives. LR-ResNet-50 gains
the highest value in mCF; (59.0%) owing to its capability
of reasoning about relations among various scenes. Moreover,
such a reasoning capability also enables LR-ResNet-50 to
surpass the other baselines in all recall metrics, as scenes
tend to be predicted as positive once its related scenes are
recognized. Another observation is that MnasNet, SqueezeNet,
and ShuffleNet-V2 show relatively poor performance due to
their light-weight designs. Compared to deep neural networks,
traditional machine learning algorithms achieve lower scores
in all metrics.

For an insight into the performance of networks in identify-
ing different scenes, we also report per-class APs in Table III.
As we can see, ResNeXt-101 achieves the highest APs in
most scenes, which is in line with the previous observations.
Furthermore, we note that most networks fail to accurately
recognize senes having scarce training samples, e.g., oil field
and port. This suggests that learning unbiased models on
an imbalanced dataset is a big challenge. Besides numerical
results, we exhibit several predictions in Table IV.

2) Learning from Noisy Crowdsourced Labels: We investi-
gate networks learned from noisy crowdsourced labels for our
task on the MultiScene dataset. To ensure a fair comparison,
we utilize the same test set as in Section IV-D and report nu-
merical results in Table V. It can be observed that OF; scores
of all models are decreased by an average of 8.2% compared
to the values in Table II, which demonstrates that noise in

crowdsourced annotations significantly affects the learning of
deep neural networks. Moreover, it is interesting to note that
the values of class-based metrics, mAP and mCF; score, are
increased by 4.6% and 1.2%, respectively, in comparison with
those in Table II. This can be attributed to the fact that numbers
of training samples, especially for scenes seldomly appearing,
are effortlessly increased by crawling OSM data with keyword
searching. Compared to models showing high performance on
the MultiScene-Clean dataset, we find that DenseNet gains the
highest scores in mCF; (59.3%), mEF; (62.6%), and mOF;
(64.1%), as it can sufficiently reuse features and has relatively
few parameters. Besides, LR-VGG-16 achieves the highest
mAP (67.8%), which demonstrates that taking advantage of
underlying relations among various scenes can suppress the
influence of noise introduced by OSM data. Furthermore,
we compare the performance of several networks trained on
MultiScene-Clean and MultiScene datasets in Fig. 7, and it can
be again observed that higher class-based scores (see orange
and brown bars in Fig. 7) are obtained when using massive
crowdsourced labels. All in all, although crowdsourced labels
influence the overall performance of networks, comparisons in
class-based scores also suggest their great potential.

V. CONCLUSION

In this paper, we propose a large-scale dataset, MultiScene,
for multi-scene recognition in single images, which is featured
by unconstrained multi-scene aerial images and the available
both crowdsourced and clean labels. The proposed dataset
allows researches in not only recognizing aerial scenes in the
wild but also learning from noisy crowdsourced labels. We
comprehensively evaluate popular baseline models on both
MultiScene-Clean (a subset consisting of only cleanly-labeled
images) and MultiScene datasets. Experimental results on the
former demonstrate that unconstrained multi-scene recognition
is still a challenging task, and those on the latter showcase the
great potential of exploiting a large number of crowdsourced
annotations. Looking into the future, the dataset can be applied
to develop more efficient networks and learning strategies for
exploiting noisy labels for aerial scene understanding in the
wild.
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Semantic Segmentation of Remote Sensing Images
with Sparse Annotations

Yuansheng Hua, Diego Marcos, Lichao Mou, Xiao Xiang Zhu, Fellow, IEEE , Devis Tuia, Senior Member, IEEE

Abstract—This is the preprint version. To read the final ver-
sion, please go to IEEE Geoscience and Remote Sensing Letters.
Training Convolutional Neural Networks (CNNs) for very high
resolution images requires a large quantity of high-quality pixel-
level annotations, which is extremely labor- and time-consuming
to produce. Moreover, professional photo interpreters might have
to be involved for guaranteeing the correctness of annotations.
To alleviate such a burden, we propose a framework for semantic
segmentation of aerial images based on incomplete annotations,
where annotators are asked to label a few pixels with easy-to-
draw scribbles. To exploit these sparse scribbled annotations,
we propose the FEature and Spatial relaTional regulArization
(FESTA) method to complement the supervised task with an
unsupervised learning signal that accounts for neighbourhood
structures both in spatial and feature terms. For the evaluation
of our framework, we perform experiments on two remote
sensing image segmentation datasets involving aerial and satellite
imagery, respectively. Experimental results demonstrate that
the exploitation of sparse annotations can significantly reduce
labeling costs while the proposed method can help improve the
performance on semantic segmentation when training on such
annotations. The sparse labels and codes are publicly available
for reproducibility purposes'.

Index Terms—Semantic segmentation, aerial image, sparse
scribbled annotation, convolutional neural networks, semi-
supervised learning.

I. INTRODUCTION

Semantic segmentation of remote sensing imagery aims at
identifying the land-cover or land-use category of each pixel
in an image. As one of the fundamental visual tasks, semantic
segmentation has been attracting wide attention in the remote
sensing community and proven to be beneficial to a variety of
applications, such as land cover mapping, traffic monitoring
and urban management. Recently, many studies [1] resort to
learning deep Convolutional Neural Networks (CNNs) with
full supervision for semantic segmentation and have obtained
enormous achievements. However, training a fully supervised
segmentation CNN requires a huge volume of dense pixel-
level ground truths, which are labor- and time-consuming to
generate. Moreover, expert annotators might be needed for
correctly identifying pixels located at object boundaries and
ambiguous regions (e.g., shadows in Fig. 1).
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(a) (b) (© (d) (e
Fig. 1. Comparisons of different levels of scribbled annotations. Trees
(marked as ) are taken as an example here. Images from left to right
are (a) an aerial image, (b) point-, (c) line- and (d) polygon-level scribbled
annotations, and (e) dense pixel-wise labels.

To alleviate the requirement of dense pixel-wise annotations,
semi-supervised learning approaches are proposed to make
use of additional information, such as spatial relations (e.g.
neighboring pixels are likely to belong to the same class) or
feature-level relations (e.g. pixels with similar CNN feature
representations are likely to belong to the same class), for
semantic segmentation. These methods aim to utilize low-
cost annotations, such as points [2], scribbles [3], [4] or
image-level labels [5], [6]. As the first attempt, Bearman et
al. [2] proposed to learn semantic segmentation models with
point-level supervision, where only one point is labeled for
each instance. In scribble-supervised algorithms, annotations
are provided in the form of hand-drawn scribbles. Wu et
al. [3] propose to learn aerial building footprint segmentation
models from scribbles. Maggiolo et al. [4] argue that a
network directly trained on scribbled ground truths fails to
accurately predict object boundaries and propose to employ a
fully connected Conditional Random Field (CRF) to refine the
shapes of objects. Compared to fully annotated ground truths,
scribbled annotations (cf., Fig. 1(c)) are easier to generate in a
user-friendly way. In comparison with point-level annotations
(e.g., Fig. 1(b)), scribbles can provide stronger supervisory
signals. However, point- and scribble-supervised segmentation
methods remain under-explored in the remote sensing commu-
nity. To this end, we propose a simple yet effective framework
for semantic segmentation of remote sensing imagery with
low-cost annotations. In this framework, we manually create
point- or scribble-level annotations and train networks on
them. Besides, we also evaluate polygon-level annotations (see
Fig. 1(d)), which can be easily yielded and cover more pixels
than the other types of annotations. Since these annotations
are sparsely distributed across the images, we call them sparse
annotations in the following sections. In order to better exploit
sparse annotations, we propose a semi-supervised learning
method which encodes and regularizes the feature and spatial
relations. To demonstrate the effectiveness of our learning
framework, extensive experiments are conducted on two VHR
datasets, the Vaihingen and Zurich Summer.
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Fig. 2. [Illustration of the proposed FESTA. A Sample @; belonging to
building (filled with black) is taken as an example.

II. METHODOLOGY
A. Supervision with Sparse Annotations

In contrast to conventional dense annotations, sparse annota-
tions have two characteristics: 1) a very small proportion pixels
are assigned semantic classes, and 2) objects do not need to
be entirely annotated (see (b), (c), (d) in Fig. 1). This greatly
reduces the effort required from the annotators, as complex
boundaries and ambiguous pixels can be avoided.

Here we consider three levels of sparse annotations: point-,
scribble-, and polygon-level. Specifically, point-level annota-
tions indicate that, for an annotator interaction, only one single
pixel is labeled. Scribble-level annotations, also called line-
level annotations, are yielded by drawing a scribble line within
an object and assigning all pixels along this line the same class
label. Similarly, polygon-level annotations can be generated
by drawing a polygon within an object and classifying pixels
located in the polygon into the same semantic class. Examples
of these three levels of annotations are shown in Fig. 1.

B. Feature and Spatial Relational Regularization

When using sparse annotations, the vast majority of pixels
in the training images are left unlabelled. In order to ex-
ploit both labeled and unlabeled pixels, we develop a semi-
supervised methodology, named FEature and Spatial rela-
Tional regulArization (FESTA), to enable a semantic segmen-
tation CNN to learn discriminative features, while leveraging
the unlabelled image pixels. An assumption shared by many
unsupervised learning algorithms [7] is that nearby entities
often belong to the same class. Based on this assumption, a
recent work [8] achieves success in representation learning by
encoding neighborhood-relations in the feature space. Inspired
by this work, we propose to encode and regularize relations
between pixels in both feature and spatial domain, as shown
in Fig. 2, so that the learned features become more useful for
semantic segmentation.

Specifically, given a sample x; (i.e., a CNN feature vector
extracted from location 4 in an image), we first encode its
relations to all other samples by measuring the distance in
space and feature similarity with respect to all other fea-
tures in the image. The sample with the smallest similarity
is considered as the far-away sample in the feature space,
xi,,, while that with the highest similarity is defined as the
neighboring sample in feature space, x;, .. According to the
aforementioned proximity assumption, it is highly probable
that ; and x;, ; belong to the same class, and thus, the
distance between them should be as small as possible. In order
to prevent a trivial solution in which all features collapse to
the same point, @; and @;,, are encouraged to further increase

their dissimilarity. We apply a similar reasoning in the spatial
domain, since images are smooth in spatial terms. Thus, we
take the 8 spatial neighbors of x; into consideration and chose
the one most similar in feature space as the spatial neighbor,
x;, .. This operation is intended to prevent pairing x; with a
spatial neighbor that belongs to the object boundary.

These priors can be incorporated into the learning objectives
by using the following loss function:

N N
Lrpsra=ay D@i,xi,,)+B> D(xi ;)
= i=1 o

+728(mi’miff)’
i=1

where D denotes the euclidean distance and S represents
cosine similarity. «, 3, and  are trade-off parameters rep-
resenting the significances of the respective terms, and N rep-
resents the number of pixels in a given image. By minimizing
LresTa, x;,, and x; are forced to move closer to x;,
while x;,, is pushed far from ;. In order to jointly exploit
the sparse scribbled annotations and FESTA for the network
training, the final loss is defined as:

L =L+ AFESTA, ()

where L., indicates the categorical cross-entropy loss calcu-
lated from pixels with annotations.

C. CRF for Boundary Refinement

To further refine the predictions of networks trained on
scribbled annotations, we integrate a fully connected CRF [9]
into our system, and the energy function of CRF model is

E = Zeu(xz) + ZGP(xi,xj), (3)
i ij

where 60,,(x;) is the unary potential and calculated as 6, (x;) =
—log P(x;). Here i ranges from O to the number of pixels
in the image, and P(x;) is the label probability of pixel i.
Op(z;,x;) is utilized to measure pairwise potentials between
pixel ¢ and j. We tested with two Gaussian kernels,

k1 = exp(

_lpi—psill> Hfz'—fj\lz)
267 203 ’

ko = exp(— L2zpil) v
where p; and I; indicate the position and color intensity
of pixel i. 01, 65, and 03 are hyperparameters that control
the kernel “scale”. In Eq. 4, ky is known as appearance
kernel and tends to classify neighboring pixels with similar
appearances [10], i.e., color intensities, into the same classes,
while ks, so-called smoothness kernel, penalizes pixels nearby
but assigned diverse labels. This step is expected to make the
class map smoother within homogeneous areas.

III. EXPERIMENTAL RESULTS

A. Dataset Description

The Vaihingen dataset? is a benchmark dataset for semantic
segmentation provided by the International Society for Pho-
togrammetry and Remote Sensing (ISPRS). 33 aerial images

Zhttp://www?2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.
html
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TABLE 1
THE TOTAL NUMBERS OF PIXELS LABELED WITH SPARSE POINT-, LINE-,
AND POLYGON-LEVEL ANNOTATIONS (MIDDLE THREE COLUMNS) AND
DENSE ANNOTATIONS (RIGHT COLUMN) IN THE VAIHINGEN AND ZURICH
SUMMER DATASETS.

Dataset Name ‘ Point Line Polygon Dense*
Vaihingen 18,787 480,593 4,591,409 | 54,373,518
Zurich Summer | 29,508 330,767 1,445,270 | 12,266,287

*Background/Clutter is not considered.

with a spatial resolution of 9 cm were collected over the city
of Vaihingen, and each image covers an average area of 1.38
km?. For each aerial image, three bands are available, near
infrared (NIR), red (R), and green (G). Besides, coregistered
digital surface models (DSMs) are provided for all images.
16 images are fully annotated. In total, six land-cover classes
are considered: impervious surface, building, low vegetation,
tree, car, and clutter/background. In this paper, we follow the
train-test split scheme in most existing works [11], [12] and
select five images (image IDs: 11, 15, 28, 30, 34) as the test
set. The remaining ones are utilized to train our models.

The Zurich Summer dataset [13] is composed of 20 images,
which are taken over the city of Zurich in August 2002 by the
QuickBird satellite. The spatial resolution is 0.62 m, and the
average size of images is 1,000 x 1,150 pixels. The images
consist of four channels: near infrared (NIR), red (R), green
(G), and blue (B). Following previous works [14], [15], we
only utilize NIR, R, and G in our experiments and train
our model on 15 images; the others (image IDs: 16, 17,
18, 19, 20) are utilized to test. In total, there are 8 urban
classes, including road, building, tree, grass, bare soil, water,
railway, and swimming pool. Uncategorized pixels are labeled
as background.

It is noteworthy that although full pixel-wise annotations are
provided for all images in the Vaihingen and Zurich Summer
dataset, we only use them in the test phase to calculate
evaluation metrics. The training of all models is done with
scribbled annotations described below.

B. Scribbled Annotation Generation

To annotate large-scale images, we employ an online la-
beling platform, LabelMe 3 and ask annotators to draw
by following these rules: 1) for each class, annotations are
supposed to cover diverse appearances (see region a, b, and
¢ in Figure 3, where cars of different colors are annotated)
and be located in different positions of the image separately.
2) polygon- and line-level annotations are not required to
delineate object boundaries precisely, see the annotations of
trees in Fig. 1(c) and 1(d). In order to make the time spent
on each level of scribbled annotations more equivalent, we
ask 4 annotators (including 2 non-experts) to label 7, 5, and 3
objects per class for point-, line- and polygon-level annotations
in each aerial image. As a consequence, sparse but accurate
annotations can be provided rapidly without effort. Since a
point- or line-level annotation is often located in the centre
area of an object and distant from its boundary, we perform
morphological dilation on all point- and line-level annotations

3http:/labelme.csail.mit.edu/Release3.0/

Fig. 3. Example polygon-level annotations of an image (ID: 13) on the

Vaihingen dataset. Annotations of cars are zoomed in to illustrate that

annotations should include variant visual appearances for one class. Legend—
: impervious surfaces, blue: buildings, cyan: low vegetation, : trees,
: cars.

with a disk of radius 3. Afterwards, pixels involved in dilated
annotations are assigned the same class labels as their central
points or lines. For polygon-level annotations, pixels within
each polygon are assigned the corresponding classes.

Table I shows the average amounts of pixels with sparse
and dense annotations in both datasets. It can be seen that
sparse annotations are several orders of magnitude fewer than
dense annotations. As to the labeling time, it took on average
133, 126, and 161 seconds per image to produce point-, line-
and polygon-level annotations, respectively, for the Vaihingen
dataset, and 177, 162, and 238 seconds per image for the
Zurich Summer dataset. In Section III-D, we demonstrate the
proposed method allows to improve the semantic segmentation
results using these sparse annotations. In Section III-D, we
discuss the differences observed among the tested annotation

types.

C. Training Details

We segment the images with a standard FCN (i.e., FCN-
16s [17]) and initialize convolutional layers with Glorot uni-
form [18] initializers. Specifically, VGG-16 is taken as the
backbone, and outputs of the last two convolutional blocks
are upsampled to the original resolution and fused with an
element-wise addition. The fused feature maps are finally fed
into a convolutional layer, where the number of filters is equiv-
alent to the number of classes. In the training phase, all weights
are trainable and updated with Nestrov Adam [19], using
B1=0.9, B> = 0.999, and ¢ = 1e—08 as recommended. We
initialize the learning rate as 2e—04 and let it decay by a factor
of 10 when validation loss is saturated. To train the network,
we define the loss as Eq. 2, and A is set experimentally to
0.1 and 0.01 for the Vaihingen and Zurich Summer datasets,
respectively. Tradeoff parameters, «, 3, and ~, are set as 0.5,
1.5, and 1, to ensure that 1) the regularizers governing feature
and spatial relations are balanced, and 2) neighboring pixels in
the image space receive more attention. The network, as well
as FESTA, is implemented on TensorFlow and trained on one
NVIDIA Tesla P100 16GB GPU for 100k iterations. The size
of mini-batch is set as 5 during the training procedure. In
the training phase, we use a sliding window to crop training
images into 256 x 256 patches, and its stride is set to 64 pixels.
Besides, no class-dependent configurations are considered. In
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TABLE 1T
NUMERICAL RESULTS ON THE VAIHINGEN DATASET (%): WE SHOW THE PER-CLASS F} SCORE, MEAN F} SCORE, AND OVERALL ACCURACY ON THE
TEST SET. MEAN AND STANDARD DEVIATION OF EACH METRIC ARE CALCULATED FROM RESULTS ON SPARSE ANNOTATIONS PRODUCED BY 4
ANNOTATORS. RESULTS ON DENSE ANNOTATIONS ARE PROVIDED AS REFERENCE.

Scribble | Model [ Imp. surf. Build. Low veg. Tree Car [ mean Fy ] OA
FCN-WL [16] 69.81 £+ 1.52 75.02 £+ 2.32 60.25 + 3.40 76.17 + 1.42 12.29 + 3.60 58.71 4+ 0.33 67.11 £ 0.97
Point FCN+dCRF [4] 75.37 + 0.93 81.37 £+ 3.10 61.93 + 5.54 78.50 £+ 1.69 17.51 £ 6.70 62.94 £+ 0.44 72.53 £ 0.42
FCN-FESTA 74.65 + 2.73 78.64 + 4.74 60.24 + 3.33 76.15 + 2.07 23.65 £+ 4.24 62.66 + 2.54 7143 4+ 2.93
FCN-FESTA+dCRF 77.62 + 1.93 80.08 + 5.27 60.78 + 4.00 76.70 £ 2.00 31.40 + 5.24 65.32 + 2.56 73.65 + 2.52
FCN-WL [16] 7844 + 3.24 83.45 + 1.58 64.02 + 2.34 79.32 + 0.54 29.01 £+ 2.96 66.85 + 1.81 76.12 + 1.52
Line FCN+dCRF [4] 81.32 4+ 245 84.88 + 1.88 63.71 £+ 3.92 79.88 £+ 1.33 38.95 £+ 4.50 69.75 + 2.23 78.03 + 1.82
FCN-FESTA 78.12 £ 3.92 83.76 + 2.00 65.78 + 1.88 80.49 £ 0.93 38.24 £ 10.31 69.28 £ 3.66 7724 £ 2.27
FCN-FESTA+dCRF 80.06 + 3.32 84.47 £ 2.23 64.35 + 2.38 80.32 + 0.92 43.72 £+ 9.62 70.58 + 3.42 77.99 £+ 2.14
FCN-WL [16] 76.71 £+ 3.63 80.03 £+ 1.42 59.40 £ 6.09 78.50 + 2.86 26.28 + 11.06 64.19 £+ 4.40 74.18 + 2.97
Polygon FCN+dCRF [4] 78.37 £+ 3.08 80.85 + 1.13 5792 + 7.67 78.67 £+ 2.87 29.13 £+ 8.15 64.99 + 3.99 75.15 + 2.94
FCN-FESTA 78.98 + 3.82 83.10 £ 2.62 62.59 + 4.89 7991 + 3.31 33.04 £ 7.71 67.52 &+ 4.07 76.65 £+ 3.39
FCN-FESTA+dCRF 80.62 + 3.22 83.62 + 2.29 60.79 £+ 5.04 79.81 £+ 2.52 40.27 £+ 8.30 69.02 + 4.01 77.32 + 2.92

Dense FCN [17] 88.67 92.83 76.32 74.21 86.67 83.74 86.51

TABLE III

NUMERICAL RESULTS ON THE ZURICH SUMMER DATASET (%): WE SHOW THE PER-CLASS F; SCORE, MEAN F; SCORE, AND OVERALL ACCURACY ON
THE TEST SET. MEAN AND STANDARD DEVIATION OF EACH METRIC ARE CALCULATED FROM RESULTS ON SPARSE ANNOTATIONS PRODUCED BY 4
ANNOTATORS. RESULTS ON DENSE ANNOTATIONS ARE PROVIDED AS REFERENCE.

Scribble | Model | Road Build. Tree Grass Soil Water Rail. Pool [ mean Fy | OA
FCN-WL [16] 69.74+3.98 78.94+3.01 82.33+2.55 82.20+2.40 53.37+7.03 87.87+1.40 0.81+1.42 48.89+9.42 | 63.02+2.14| 77.38+2.73
Point FCN+dCRF [4] 72.131+4.99 80.71+1.84 82.87+2.08 83.554+2.07 63.924+8.90 92.71+£1.26 2.09+4.17 59.964+14.60| 67.24+1.93| 80.03+2.26
FCN-FESTA 70.64+3.44 77.34+4.13 82914248 83.734+2.34 56.67+5.64 89.67+£2.25 0.94+1.89 73.624+4.06 | 66.94+2.56| 78.1743.00
FCN-FESTA+dCRF 71.23+2.61 77.714£3.17 82.81+1.99 84.184+1.96 66.34+3.69 93.40+1.81 0.00+0.00 77.38+8.87 | 69.05+1.15| 79.1142.14
FCN-WL [16] 73.00+4.60 81.17+3.77 82.82+2.78 81.88+1.41 67.02+8.77 90.98+1.79 1.19+1.60 58.77+7.82 | 67.10+2.02| 79.75+2.25
Line FCN+dCRF [4] 71.71+4.83 79.224+4.01 81.22+3.06 80.4342.10 71.7249.20 84.65+14.90 2.35+4.71 67.58+17.39| 68.394+3.10| 78.84+2.15
FCN-FESTA 73.34+3.88 79.08+3.60 82.71+2.10 84.274+1.41 60.67+13.36 92.37+1.44 1.02+0.83 74.274+8.24 | 68.47+2.45| 79.524+2.86
FCN-FESTA+dCRF 71.74+2.78 75.814+4.18 81.20+1.60 83.44+1.51 66.49+15.57 94.68+0.52 0.00+0.00 82.06+6.80 | 69.43+2.57| 78.5142.21
FCN-WL [16] 64.18+6.14 72.174£6.01 79.64+4.25 77.104£3.92 49.17+16.96 89.264+3.52 1.31+£1.09 76.90+6.33 | 63.72+4.35| 73.0944.49
Polygon FCN+dCRF [4] 62.63+5.77 70.35+4.88 78.30+3.53 75.9444.42 52.11+14.06 91.03+4.39 0.84+1.69 85.13+2.72 | 64.54+4.08| 72.37+3.89
FCN-FESTA 66.531+5.07 74.06+3.06 80.05+3.66 79.424+3.56 57.83+11.38 90.80+2.42 5.87+4.86 65.684+16.06| 65.03+1.98| 75.00+3.17
FCN-FESTA+dCRF 65.104+4.42 71.96+2.76 79.44+3.26 78.874+4.58 61.861+9.72 92.50+2.96 6.37+£6.63 77.2146.63 66.66+2.41| 74.41+2.86

Dense FCN [17] 88.34 93.27 92.40 89.48 67.96 96.87 2.98 88.10 77.42 90.51

the test phase, we employ dense CRF to refine predictions
before calculating metrics. We tuned the parameters of dense
CRF (04, 02, and 05 in Eq. 4) on validation images, and find
that satisfactory results can be achieved for both FCN and
FCN-FESTA when setting them to 30, 10, and 10, respectively.
In the case of large homogeneous areas of an image belonging
to the same class, a should be set to a small value, which
encourages the network to focus more on geographically
nearby samples. Besides, a large batch size and sliding window
can also help alleviate the influence of such a scenario.

D. Comparing with Existing Methods

We compare a Fully Convolutional Network [17] (FCN)
learned using the proposed FESTA (FCN-FESTA) against an
FCN learned with weighted loss function (FCN-WL) [16] on
sparse annotations. We also report segmentation results of the
baseline FCN trained on dense labels. In addition, we study
the influence of the fully connected CRF by comparing FCN-
FESTA+dCRF and FCN+dCRF [4]. Each model is trained
and validated on sparse annotations independently. Per-class
Fy scores, mean F scores, and overall accuracy (OA) are
calculated on test images with dense annotations. Considering
that each model is learned on labels from four annotators,
respectively, we average metrics obtained by each annotator
and report them in the form of mean =+ standard deviation.

Table II exhibits numerical results on the Vaihingen dataset.
FCN-FESTA+dCRF achieves the highest mean F) scores
in training with all kinds of scribbled annotations, which
demonstrates its effectiveness. To be more specific, with point-

and polygon-level supervision, FCN-FESTA improves the
mean Fj score by 3.95% and 3.33% compared to FCN-WL,
respectively. By refining predictions with dense CRF, FCN-
FESTA+dCREF achieves improvements of 2.38% and 4.03% in
comparison with FCN+dCREF. It is interesting to observe that
line-level scribbles improve the segmentation performance the
most, and FCN-FAST+dCRF learned with such annotations
obtains the highest mean Fj score, 70.58%. Moreover, we
note that FESTA can enhance the network capability of
recognizing small objects, i.e., car, in high resolution aerial
images. Example segmentation results of networks trained on
line annotations are visualized in Fig. 4.

Numerical results on the Zurich Summer dataset are shown
in Table III. As can be seen, FESTA contributes to increments
of 3.92%, 1.37% and 1.31% in the mean F; score when
training with point-, line- and polygon-level annotations. By
utilizing line annotations and dense CRF, FCN-FESTA+dCRF
obtains the highest mean F} score, 69.43%. Besides, we note
that the exploitation of dense CRF plays a significant role in
improving results of networks trained on point-level scribbles.
Example visual results of networks trained on line annotations
are shown in Fig. 5. In our experiments, we also train networks
with multi-class dice loss and find that results are comparative
to those learned with crossentropy loss.

E. Discussion on annotation type

To further study the influence of annotations, we also train
baseline FCNs on dense annotations and report numerical
results in Tables II and III. As shown in Tables II and III,
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(a) image (b) dense 6t (c) FeN-wL  (d) FoN+acrF - (€) ours
Fig. 4. Examples of segmentation results on the Vaihingen dataset. All models
are trained on line annotations. The legend is the same as that in Fig. 3.
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(a) image (b) dense Gt (c) Fen-wL  (d) FoNwacRE - (€) ours
Fig. 5. Examples of segmentation results on the Zurich Summer dataset.
All models are trained on line annotations. Legend—black: road, brown: soil,
green: grass, dark green: tree, gray: building, and : background.
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line-level annotations lead to the best performance on both
datasets, even though the number of labeled pixels is an
order of magnitude smaller than polygon annotations (see
Table I). Although it was expected that line annotations would
outperform point annotations, due to their ability to capture
within-object variations, we were surprised to see that they
also outperformed polygon annotations. We suspect that this
is linked to the fact that the number of pixels per object
grows quadratically for polygons and linearly for lines. This
would lead to a more balanced weighing of differently sized
objects in the case of line annotations and an under-weighing
of smaller objects in the case of polygon annotations, which
could harm the model’s performance. Another reason could
be that, since drawing a line is faster than drawing a polygon,
annotators for the line features provided more scribbles in the
same time budget.

In spite of the mean F} performance boost provided by
FESTA, there is still a large gap with respect to the FCN
model trained with dense ground truths, of 13% in Vaihingen
and 8% in Zurich. This gap is, however, not evenly distributed
across the classes. The gap is smaller or non-existent in classes
such as water, tree, grass or soil, which are often homogeneous
in terms of materials. On the contrary, it is larger for classes
with more diverse materials (and therefore observed spectral
values), such as building and car (in the Vaihingen dataset). It
is noteworthy to mention that the class railway, in the Zurich
dataset, is systematically missed in all cases, including the
densely supervised FCN.

IV. CONCLUSION

In this paper, we propose a simple yet efficient framework
for semantic aerial image segmentation using sparse annota-
tions and a semi-supervised learning objective. In order to vali-
date the effectiveness of our approach, we conduct experiments
on the Vaihingen and Zurich Summer datasets. Numerical and
visual results suggest that the proposed method contributes
to the improvement of semantic segmentation results using
several kinds of sparse annotations. Although models learned
on sparse annotations achieve relatively lower accuracies than
those using dense annotations, we show that using a semi-
supervised deep learning approach can help closing this per-
formance gap while leveraging sparse annotations that can
significantly reduce the costs of label generation. As future
work, the proposed framework can be further improved by
introducing graph-based models and prior knowledge learned
from label semantics.
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