Ebel, Patrick and Xu, Yajin and Schmitt, Michael and Zhu, Xiao Xiang (2022) SEN12MS-CR-TS: A Remote-Sensing Data Set for Multimodal Multitemporal Cloud Removal. IEEE Transactions on Geoscience and Remote Sensing, 60, p. 5222414. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3146246. ISSN 0196-2892.
PDF
- Published version
8MB |
Official URL: https://ieeexplore.ieee.org/document/9691348
Abstract
About half of all optical observations collected via spaceborne satellites are affected by haze or clouds. Consequently, cloud coverage affects the remote-sensing practitioner’s capabilities of a continuous and seamless monitoring of our planet. This work addresses the challenge of optical satellite image reconstruction and cloud removal by proposing a novel multimodal and multitemporal data set called SEN12MS-CR-TS. We propose two models highlighting the benefits and use cases of SEN12MS-CR-TS: First, a multimodal multitemporal 3-D convolution neural network that predicts a cloud-free image from a sequence of cloudy optical and radar images. Second, a sequence-to-sequence translation model that predicts a cloud-free time series from a cloud-covered time series. Both approaches are evaluated experimentally, with their respective models trained and tested on SEN12MS-CR-TS. The conducted experiments highlight the contribution of our data set to the remote-sensing community as well as the benefits of multimodal and multitemporal information to reconstruct noisy information. Our data set is available at https://patrickTUM.github.io/cloud_removal .
Item URL in elib: | https://elib.dlr.de/192764/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | SEN12MS-CR-TS: A Remote-Sensing Data Set for Multimodal Multitemporal Cloud Removal | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | March 2022 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 60 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2022.3146246 | ||||||||||||||||||||
Page Range: | p. 5222414 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Cloud removal, data fusion, image reconstruction, sequence-to-sequence, synthetic aperture radar (SAR)-optical, time series | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Deposited On: | 22 Dec 2022 09:06 | ||||||||||||||||||||
Last Modified: | 22 Dec 2022 09:06 |
Repository Staff Only: item control page