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Abstract— About half of all optical observations collected via
spaceborne satellites are affected by haze or clouds. Conse-
quently, cloud coverage affects the remote-sensing practitioner’s
capabilities of a continuous and seamless monitoring of our
planet. This work addresses the challenge of optical satellite
image reconstruction and cloud removal by proposing a novel
multimodal and multitemporal data set called SEN12MS-CR-TS.
We propose two models highlighting the benefits and use cases of
SEN12MS-CR-TS: First, a multimodal multitemporal 3-D con-
volution neural network that predicts a cloud-free image from a
sequence of cloudy optical and radar images. Second, a sequence-
to-sequence translation model that predicts a cloud-free time
series from a cloud-covered time series. Both approaches are
evaluated experimentally, with their respective models trained
and tested on SEN12MS-CR-TS. The conducted experiments
highlight the contribution of our data set to the remote-sensing
community as well as the benefits of multimodal and multitem-
poral information to reconstruct noisy information. Our data set
is available at https://patrickTUM.github.io/cloud_removal.

Index Terms— Cloud removal, data fusion, image recon-
struction, sequence-to-sequence, synthetic aperture radar
(SAR)-optical, time series.

I. INTRODUCTION

THE majority of our planet’s land surface is covered by
haze or clouds [1]. Such atmospheric distortions impede
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the capability of spaceborne optical satellites to reliably and
seamlessly record noise-free data of the earth’s surface. The
presence of clouds is detrimental to typical remote-sensing
applications, for instance, land cover classification [2], seman-
tic segmentation [3], [4], and change detection [5], [6].

Hence, the need for cloud-free earth observation gave rise
to a rapidly growing number of haze and cloud removal
methods [3], [7]–[14]. Most previous methods focus on a mul-
timodal approach [8], [13]–[15] to reconstruct cloud-covered
pixels via information translated from synthetic aperture
radar (SAR) or other sensors more robust to atmospheric
disturbances [16], yet focus on only a single time point of
observations. In comparison, recent models attempt a temporal
reconstruction of cloudy observations by means of inference
across time series [12], [17], [18], utilizing the circumstance
that the extent of cloud coverage over a particular region is
variable over time and seasons [1].

The work at hand aims to combine both preceding
approaches and thus considers the challenge of cloud removal
in optical satellite imagery by integrating information across
time and within different modalities. For this purpose,
we curate a new data set called SEN12MS-CR-TS, which
contains multitemporal and multimodal satellite observations.
Specifically, SEN12MS-CR-TS consists of 1-year long time
series of coregistered radar Sentinel-1 (S1) as well as mul-
tispectral Sentinel-2 observations (S2) acquired in a paired
manner, covering regions of interest (ROIs) from all over the
world. We highlight the benefits of the proposed data set by
training and testing two different models on our data set: First,
a multimodal multitemporal 3-D-Convolution Neural Network
that predicts a cloud-free image from a sequence of cloudy
optical and radar images. Second, a sequence-to-sequence
translation model that predicts a cloud-free time series from
a cloud-covered time series. Both approaches are evaluated
experimentally, with their respective models trained and tested
on SEN12MS-CR-TS. Exemplary outcomes are highlighted in
Fig. 1. The conducted experiments highlight the contribution
of our curated data set to the remote-sensing community
as well as the benefits of multimodal and multitemporal
information to reconstruct noisy information.

A. Related Work

As the presence of clouds in optical satellite imagery poses
a severe hindrance for remote-sensing applications, there has
been plenty of preceding research on cloud removal meth-
ods [3], [7]–[10], [12]–[14], [20]. The focus of this overview
is on data sets for cloud removal methods. Much of the
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Fig. 1. Example observations and cloud-free predictions. Columns: Samples
at two different time points. Rows: S1 data (in grayscale), cloudy S2 data (in
RGB), predicted cloud-free Ŝ2 data, and reference cloud-free S2 data of a
later point in time. The results highlight that our network is able to integrate
multimodal and multitemporal information to predict a clear-view sequence
of multispectral observations, even in the presence of heavy cloud coverage.

early work on cloud removal considered data of simulating
cloudy observations [3]. Copying cloudy pixel values from
one image to another clear-view one [3] captures the spectral
properties of naturally cloudy observations more faithfully
than synthetic noise (e.g., Perlin noise [21]) [7], [8], [20], but
neither precisely reproduce the statistics of satellite images
containing natural cloud occurrences [14]. Consequently, our
data set contain cloud-free as well as naturally occurring
cloud-covered optical satellite recordings. The SEN12MS-
CR data set [14] provides a globally distributed collection
of coregistered mono-temporal Sentinel-1 as well as cloudy
and cloud-free Sentinel-2 observations. Our data set is an
extension of SEN12MS-CR in the sense that we collect
repeated measures per ROI and therefore provide a time
series of coregistered S1 and S2 observations, gathered such
that matched observations of both modalities are no more
than two weeks apart. In comparison to the preceding data
set, ours allows integrating information not solely across
different sensors, but also across different points in time
distributed throughout the year. Similarly, the work of [12]
allows for time-series cloud removal by providing a col-
lection of tri-temporal RGB (NIR)-channel optical data and
corresponding models. Our contribution extends this work
by providing true multimodal data recorded by two distinct
sensors, SAR Sentinel-1 measurements, as well as 13-band

multispectral Sentinel-2 observations. Furthermore, the length
of each time series is increased considerably, from 3 to 30 sam-
ples. Finally, [12] exclude observations with greater than 30%
cloud coverage from their data set, which deviates from real
conditions. Our approach aims to model the complete spectrum
of cloud coverage, including conditions commonly encoun-
tered by remote-sensing practitioners. In sum, our work and
its main contribution, a large-scale multimodal multitemporal
data set for cloud removal in optical satellite imagery, build
on a history of research and improve upon the current state of
image reconstruction in remote sensing by providing a novel,
carefully curated data set.

II. DATA

This work introduces SEN12MS-CR-TS, a multimodal and
multitemporal data set for training and evaluating global
and all-season cloud removal methods. The data set con-
sists of 53 globally distributed ROI, curated as detailed in
Section II-A. The ROIs are over 4000 × 4000 px2 each,
covering about 40×40 km2 of land such that the total surface
area covered by the data set is over 80000 km2. Of all collected
ROI, 40 are defined as a training split and 13 as a hold-out
split to evaluate cloud removal approaches on. For every ROI,
we collect 30 coregistered and paired S1 and S2 full-scene
images evenly spaced in time throughout the year of 2018.
Each acquired image is inspected and quality-controlled manu-
ally. The spatial distribution of all ROI is depicted in Fig. 2 and
highlights the global sampling of our data set. The empirical
distribution of the cloud coverage of all optical observations
(examples are shown in Fig. 3) is computed as detailed in
Section II-C and the statistics are presented in Figs. 4 and 5
for the train and the test splits, respectively. The cloud-free
Sentinel-2 (RGB-channel) observations of four example ROI
illustrating the diversity of our data set are illustrated in Fig. 6.
Importantly, the data set is curated without excluding any
interval of cloud coverage such that the collected observations
also reflect conditions of high cloud coverage as commonly
encountered in practice [1]. The data is made available under
https://patrickTUM.github.io/cloud_removal. It is about 2 Tb
in size and compatible with the SEN12MS-CR data set [14].
That is, no train ROI of SEN12MS-CR is part of our data set’s
test ROI and vice versa.

A. Data Collection

All curated data are recorded via the SAR Sentinel-1
and multispectral Sentinel-2 (level 1-C top-of-atmosphere
reflectance product) instruments of European Space Agency’s
(ESA’s) Copernicus mission. The recorded observations are
acquired via Google Earth Engine [22] and a custom semiauto-
matic processing pipeline. We randomly sample the geospatial
locations of 53 ROIs from SEN12MS-CR [14]. To minimize
mosaicing, observations of cells covered by a single pass
are collected. The samples are referenced within the World
Geodetic System 1984 (WGS84) coordinate system. For every
ROI, 30 time intervals are evenly spaced throughout the year of
2018. For every time interval, a coregistered, geo-referenced,
and full-scene S1 image as well as a paired full-scene S2
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Fig. 2. Spatial distribution of the ROI constituting SEN12MS-CR-TS. Areas belonging to the training split are denoted in blue, and regions of the testing
split are colored in green. The ROIs of SEN12MSCR [14], nonoverlapping and compatible with our data set, are depicted in gray. Any graphical overlap of
the semitransparently plotted dots is rendered in darker tones so close-by dots can easier be discerned.

image (level 1-C) are collected. The acquisition within the
same interval window is such that corresponding multimodal
images are no more than two weeks apart. Further statistics
regarding the pairing of observations are provided in appendix.

B. Preprocessing

To prepare the collected raw data and translate it into a
format that neural networks for cloud removal can handle
the following preprocessing steps are taken: Each band of
every observation is upsampled to 10-m resolution (i.e., to the
native resolution of Sentinel-2’s bands 2, 3, 4, and 8). Every
full-scene image is sliced into nonoverlapping patches of
dimensions 256×256 px2. The S1 observations are processed
via the Sentinel-1 toolbox [23] (including border and thermal
noise removal, radiometric calibration, and orthorectification)
and decibel-transformed. An example patch-wise tuple of
paired S1 and S2 data is illustrated in Fig. 3. Input patches
to any ResNet model [24] are preprocessed in line with
the pipeline of [13] as follows: the vertical-vertical (VV)
and vertical-horizontal (VH) channels of S1 observations are
value-clipped in the ranges [−25; 0], [−32.5; 0] and rescaled
to the interval [0; 2], while S2 patches are value-clipped to
[0; 10000] and normalized to the range [0; 5]. For all other net-
works with a different backbone architecture, preprocessing is
done as follows: each patch is value-clipped and then rescaled
for every pixel to take normalized values within the unit range
of [0, 1]. The modalities S1 and S2 are value-clipped within
the intervals of [−25; 0] and [0; 10000], respectively. This
way, we follow the preprocessing protocol of the preceding
work and avoid any unnecessary adjustments, for the sake of
simplicity. For evaluation, the pixel values of all input patches,
target images, and predictions are remapped to the unit interval

[0, 1], where the goodness of predictions is assessed according
to the metrics stated in Section IV-A.

C. Cloud Detection and Mask Computation

In order to analyze the statistics of cloud coverage in
SEN12MS-CR-TS and to model the spatio-temporal extent of
clouds, we compute binary cloud masks m. For each optical
image, the masks m are computed on-the-fly via the cloud
detector of s2cloudless [19], which provides a binary mask
of pixel-wise values in {0, 1} that indicate cloud-free and
cloud-covered pixels, respectively. The cloud mask accuracy
of s2cloudless is reported to be on par with the multitemporal
classifier MACCS-ATCOR joint algorithm (MAJA) [25], but
the considered detector can be applied on mono-temporal
satellite observations. Note that, alternatively to s2cloudless,
the masks m may be computed via a dedicated neural net-
work for cloud detection [26], [27]. However, s2cloudless has
proved to be lightweight and provides sufficient performance
at little extra computational cost in run time or memory,
making it an appealing cloud detector to be applied on a
large-scale data set such as SEN12MS-CR-TS. Example cloud
detections are illustrated in Fig. 3.

III. METHODS

We consider two distinctively different methods to highlight
the benefits of our curated data set and the diverse tasks it
allows to approach. The first method is a neural network recon-
structing cloud covered pixels in time series of multimodal
data to predict a single target image acquired at a cloud-free
time point. The second approach introduces a neural network
that performs sequence-to-sequence cloud removal, that is,
it predicts a time series of cloud-free observations the same
length as the cloudy input sequence.
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Fig. 3. Example data, preprocessed as stated in Section II-B. Rows: S1 data (in grayscale), S2 data (in RGB), and binary cloud masks (as per s2cloudless [19]).
Columns: Samples of five different time points. The illustrations show that the observed region is affected by variable atmospheric disturbances and covered
by a dynamic extent of clouds, changing over time. The detected cloud coverage at the individual time points is 36%, 49%, 23%, and 48%, with an average
of about 39% across all illustrated samples. While some pixels are clear at least at one point in the series and may thus be reconstructed by integrating across
time, whereas others are cloud-covered throughout the sequence and require spatial context or cloud-robust sensor information to be reconstructed.

Fig. 4. Statistics of cloud coverage of SEN12MS-CR-TS train split, computed
on full-scene images via the detector of [19]. On average, approximately 44%
(±42%) of occlusion is observed. The empirical distribution of cloud coverage
is bimodal and ranges from cloud-free views to total occlusion.

A. Multitemporal Multimodal Cloud Removal

For multitemporal multimodal cloud removal, we consider
a deep neural network that builds on the generator of [12].
Our model receives a sequence of t = 1, . . . , n input
tuples (S1, S2)t and predicts a cloud-removed multispectral

Fig. 5. Statistics of cloud coverage of SEN12MS-CR-TS test split, computed
on full-scene images via the detector of [19]. On average, approximately 50%
(±42%) of occlusion is observed. The empirical distribution of cloud coverage
is bimodal and ranges from cloud-free views to total occlusion.

image Ŝ2. The architecture of the proposed model uses
a ResNet [24] backbone, with Siamese residual branches
processing the individual time points until their information
gets integrated. That is, we replaced the pairwise concatenation
of 2-D feature maps in [12] by stacking features in the
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Fig. 6. Four different regions contained in SEN12MS-CR-TS, highlighting the diversity of sampled landcovers. The depicted S2 observations (RGB channels)
are cloud-free samples of their respective time series. The average ROI covers about 40 × 40 km2 and is split into over 700 patch samples, with each patch
of size 256 × 256 px2.

temporal domain, followed by 3-D convolutions. Moreover,
as the first part of the generator of [12] is effectively a
single time-point cloud removal subnetwork (as each time
point is processed individually up to this point), we substitute
this component by the established ResNet-based [24] cloud
removal network of [13]. Subsequently, the feature maps
are stacked in the temporal dimension and 3-D convolutions
are applied to integrate information across time. The output
of the network is a single cloud-free image prediction Ŝ2.
A schematic overview of the described architecture is shown
in Fig. 7.

B. Internal Learning for Sequence-to-Sequence
Cloud Removal

The sequence-to-sequence cloud removal method [28] fol-
lows the 3-D encoder–decoder architecture of [29], constituted
of an encoder as well as a decoder component. Both compo-
nents are arranged symmetrically in the style of U-Net [30] and
linked via skip connections between paired layers. The input
to the network is a sequence of multitemporal S1 samples

and its output is a sequence of multitemporal cloud-removed
S2 predictions. With regard to its input-to-output mapping,
the proposed architecture resembles earlier SAR-to-optical
translation method [31], [32]. Similar to these earlier domain
translation approaches, our network learns information of the
target domain (i.e., the optical imagery) via the supervision
signal. Different from these approaches, the internal learning
framework described below removes clouds and directly learns
to denoise the target image sequence.

The architecture of the network is summarized in Fig. 8.
Note that the key difference between the given model and the
sequence-to-point method of Section III-A (depicted in Fig. 7)
is in the output dimensions: Whereas the sequence-to-point
architecture maps a sequence of n cloudy inputs to a single
cloud-removed prediction, the sequence-to-sequence approach
preserves the temporal information by mapping to a time series
of n cloud removed outputs. Moreover, the point estimator
receives tuples of S1 and S2 inputs, whereas the network
of Fig. 8 is driven solely by S1 data (or Gaussian noise,
as proposed in [33] and [29]). Finally, the sequence-to-point
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Fig. 7. Conceptual illustration of the sequence-to-point cloud removal architecture Gseq2point. The network is based on the architecture of [12] and consists
of n Siamese ResNet branches [13] doing single time-point cloud removal on n individual time points. Subsequently, the feature maps are stacked in the
temporal dimension and 3-D convolutions are applied to integrate information across time. The output of the network is a single cloud-free image prediction.

Algorithm 1 Internal Learning to Remove Clouds
1: procedure SEQ2SEQDECLOUDING(S1, S2, i ter Max)
2: GS1→S2 = init. new NeuralNetwork()
3: iterCount = 0
4: while iterCount < iterMax do
5: Ŝ2 = GS1→S2(S1)
6: GS1→S2.backpropagate(Lall(S2, Ŝ2))
7: iterCount = iterCount + 1
8: Return Ŝ2

network of Fig. 7 builds on the Siamese architecture of [12]
with a ResNet backbone [13] plus 3-D convolutions, whereas
the sequence-to-sequence approach of Fig. 8 follows a 3-D
convolutional variant of U-Net [30], as proposed in [29].

The training procedure of the sequence-to-sequence network
follows that of internal learning for image inpainting [29],
[33], which is formalized in Algorithm 1. In this framework,
for a given target sequence, a neural network is trained from
scratch directly on the target sequence (without any need for
additional or cloud-free training data) in order to reconstruct
its noisy pixels. The observations exhibit spatio-temporal
regularities and patterns (i.e., signal in the data), which is first
modeled and learned by the network. The irregularities in the
sequence (i.e., noise in the target data) are only internalized
after, similar to a conventionally trained network overfitting to
noise on training data. The internal learning approach exploits
this signal–noise dichotomy and teaches a model to reconstruct
cloud-covered pixels in the target sequence of S2 observations,
without need for any external or cloud-free training data.
In detail, a neural network is initialized and trained from
scratch directly on the target sequence. At each iteration, the
model receives input driving its activations (e.g., Gaussian
noise or S1 recordings) and predicts a sequence Ŝ2. The

predictions Ŝ2 are compared against the target sequence S2
(e.g., according to a cost function Lall as in 5) and the network
learns to reproduce the cloud-free pixels. The training stops
before the network overfits to internalizing the cloudy pixels.

With respect to its application and functionality, our
sequence-to-sequence neural network resembles classical
low-rank and sparse signal decomposition methods
[34]–[37]: First, while neural networks are typically
trained on a dedicated training data set separated from the test
observations, numeral signal decomposition methods can be
directly utilized on the data of interest. Similarly, our model
can be directly applied on the test data. Second, unmixing of
signals is very generic and can be applied to matrices as well
as tensors. In comparison, the deep image prior approach
applies to single images as well as time series [29], [33], too.
Finally, the decomposition itself is into a low-rank part and
a sparse component. The low-rank part denotes the data’s
compact representation and regularities. That is, spatial,
spectral, or temporal (auto-)correlations such as the land
cover mapped by a satellite. The sparse component consists
of the irregular part of the data which has only a few nonzero
entries, such as the appearance of clouds. In comparable
terms, the internal learning technique allows our network to
discover the regularities in the data and generalizing it to
cloud-covered samples, before overfitting to the noise.

IV. EXPERIMENTS AND RESULTS

This method details the experimental design and the cor-
responding results on the considered cloud removal methods
as well as their ablation variants. Section IV-A specifies
the measures of goodness used to assess the quality of the
individual techniques’ predictions. Section IV-B introduces the
baselines compared against the proposed model of III-A on the
sequence-to-point cloud removal task. Sections IV-C and IV-D
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Fig. 8. Conceptual illustration of the 3-D encoder–decoder architecture Gseq2seq employed in the sequence-to-sequence cloud removal model [28]. The network
is based on the architecture of [29] and consists of encoder and decoder parts arranged symmetrically in the style of U-Net [30], with skip connections between
paired layers. Input to the network is a batch of multitemporal S1 observations. The output is a predicted batch of multitemporal multispectral S2 observations.
For the ablation model considered in Section IV-D, Gaussian noise is used as an input as in [33] and [29].

detail the experiments and outcomes for the sequence-to-point
and sequence-to-sequence cloud removal tasks, respectively.

A. Metrics
We evaluate the quantitative performance in terms of nor-

malized root mean squares error (NRMSE), peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) [38], and
Spectral Angle Mapper (SAM) [39], defined as

NRMSE(x, y) =
���� 1

C · H · W

C,H,W�
c=h=w=1

(xc,h,w − yc,h,w)2

PSNR(x, y) = 20 · log10

�
1

NRMSE(x, y)

�

SSIM(x, y) = (2μxμy + �1)(2σxy + �2)

(μx + μy + �1)(σx + σy + �2)

SAM(x, y) = cos−1

×
⎛
⎝
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c=h=w=1 xc,h,w · yc,h,w�
C,H,W

c=h=w=1 x2
c,h,w · 
C,H,W

c=h=w=1 y2
c,h,w

⎞
⎠

with images x, y compared via their respective pixel values
xc,h,w, yc,h,w ∈ [0, 1], dimensions C = 3, H = W = 256,
means μx, μy , standard deviations σx , σy , covariance σxy as
well as constants �1, �2 to stabilize the computation. NRMSE
belongs to the class of pixel-level metrics and quantifies the
average discrepancy between the target and the predicted
pixels in Units of the measure of interest. PSNR is evaluated
on the whole image and quantifies the signal-to-noise ratio
of the prediction as a reconstruction of the target image.
SSIM is another image-wise measure that builds on PSNR
and captures the SSIM of the prediction to the target in terms
of perceived change, contrast, and luminance [38]. The SAM
measure is a third image-level metric that provides the spectral
angle between the bands of two multichannel images [39].
For further analysis, the pixelwise NRMSE is evaluated in
three manners: 1) over all pixels of the target image (as per

convention), 2) only over cloud-covered pixels (visible in nei-
ther of any input optical sample) to measure reconstruction of
noisy information, and 3) only over cloud-free pixels (visible
in at least one input optical patch) quantifying preservation of
information. The pixel-wise masking is performed according
to the cloud mask given by the detector of [19].

B. Baseline Methods

To put the performances of our proposed model and abla-
tions into context, we consider the following baseline methods.
First (“least cloudy”), taking the least-cloudy input obser-
vation and forwarding it without further modification to be
compared against the cloud-free target image. This provides a
measure of how hard the cloud removal task is with respect
to the extent of cloud-coverage present in the data. Second
(“mosaicing”), we perform a mosaicing method that averages
the values of pixels across cloud-free time points, thereby
integrating information across time. That is, for any pixel,
if there is a single clear-view time point, then its value is
copied; for multiple cloud-free samples, the mean is formed
and in case no cloud-free time point exists, then a value
of 0.5 is taken as a proxy. This is to avoid any extreme
values, such as cloudy pixels of high intensity. The mosaicing
technique provides a measure of how much information can
be reconstructed across time, from multispectral optical obser-
vations exclusively. Third, ResNet refers to a residual neural
network as described and trained in Sections III-A and IV-C.
The architecture is based on the model of [13] and serves as
a relevant baseline because parts of this model are used as
Siamese residual branches within our model, as detailed in
Section III-A. It provides an estimate of how well a point-
to-point cloud removal model can perform as a baseline.
Fourth, the baseline spatio-temporal generative adversarial
network (STGAN) denotes the “Branched ResNet generator
[infra-red (IR)]” architecture of [12]. It is a sequence-to-
point cloud removal model, and the architecture of our own
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sequence-to-point neural network closely follows its design,
as detailed in Section III-A. In sum, the purpose of assessing
these baselines is to analyze whether trivial solutions to the
multimodal multitemporal sequence-to-point cloud removal
problem exist, and how any more sophisticated deep learning
approach compares against these methods and our proposed
model trained on SEN12MS-CR-TS.

C. Sequence-to-Point Cloud Removal

This section details the training specifics of the sequence-to-
point cloud removal architecture introduced in Section III-A.
As detailed in Section III-A, up to the temporal concatenation
layer, we use a version of the ResNet-based [24] cloud removal
network of [13] and pretrained it on SEN12MS-CR [14]
according to the training specifics of [13]. All our consid-
ered sequence-to-point cloud removal networks and ablation
models share this pretrained single-temporal cloud removal
network as a starting point for the sake of comparability and
in order to reduce the duration of training. The networks are
trained for a total of ten epochs on one tuple of patches per
location for every ROI in the training split. For training, the
input S2 patches are filtered to display within 0%–50% of
cloud coverage. The target S2 patch is selected to be the
sample showing the minimum cloud coverage over the given
time series, that is, it is not necessarily temporally preceding
or following the input patches. For the first 25 000 steps in the
training procedure, the networks are trained with the initial
ResNet Siamese components frozen, exclusively optimizing
the subsequent 3-D convolution layers. After the steps with
the pretrained weights frozen and once the deeper layers have
been calibrated to the initial network’s latent feature maps,
the full network is trained end-to-end for the remainder of the
process. During training, the network minimizes the loss Lall

Lall = λL1LL1 + λpercLperc (1)

LL1 = ||S2 − Ŝ2||1 (2)

Lperc = ||VGG16(S2), VGG16(Ŝ2)||2 (3)

with λL1 = 100 according to [12] and λperc = 1 as hyper-
parameters weighting the individual pixel-wise loss LL1 and
the perceptual loss Lperc. The perceptual loss is computed by
means of an auxiliary Visual Geometry Group 16 (VGG16)
network [40] resulting in sharper image reconstructions [41].
In comparison to other VGG16 pretrained on classical com-
puter vision data sets such as ImageNet [42] and thus limited
to RGB channel data, we pretrained a VGG16 for landcover
classification on the SEN12MS data set [43] according to the
training protocol of [2]. The proposed sequence-to-point cloud
removal network and its ablation variants are optimized via
Adaptive Moment Estimation (ADAM) [44], with a learning
rate of 0.0002 and momentum parameters [0.5, 0.999] as
in [12]. A batch size of one tuple of samples per iteration
is used for training.

To evaluate performances on the test split, samples con-
taining S2 observations from the complete range of cloud
coverage (between 0 and 100%) are considered for input.
Table I compared the results of our proposed model with the
baselines detailed in Section IV-B. The results show that the

TABLE I

QUANTITATIVE EVALUATION OF THE PROPOSED SEQUENCE-TO-POINT
MODEL WITH BASELINE APPROACHES IN TERMS OF NORMALIZED

ROOT MEAN SQUARED ERROR (NRSME), PSNR, SSIM [38], AND

THE SAM [39] METRIC. OUR MODEL PERFORMS BEST IN THE

MAJORITY OF METRICS, DEMONSTRATING THAT A DEEP
NEURAL NETWORK APPROACH YIELDS ADDITIONAL

BENEFITS OVER TRIVIAL SOLUTIONS

TO THE MULTIMODAL MULTITEMPORAL
CLOUD REMOVAL PROBLEM

proposed network outperforms the baselines in the majority
of metrics, except for PSNR (where mosaicing comes first)
and the NRMSE (clear) preservation metric (where the “least
cloudy” approach performs best). This demonstrates that a
deep neural network approach can typically outperform trivial
solutions to the multimodal multitemporal cloud removal
problem. Exemplary outcomes for the considered baselines
on four different samples from the test split are presented
in Fig. 9. The considered cases are cloud-free, partly cloudy,
cloud-covered with no visibility except for a single time point,
and cloud-coverage with no visibility at any time point. The
results show that the considered models typically outperform
the simple heuristics. One exceptional case is least cloudy
in the absence of clouds, which manages to accomplish a
faithful prediction in such settings. Moreover, the illustrations
underline that multitemporal and multimodal data may benefit
image reconstruction: While most methods perform well in
the cloud-free or partly cloudy cases, multisource integra-
tion is needed if individual time points contain dense cloud
coverage over wide areas. When all input data is covered
by thick clouds, then this poses a severe challenge for all
approaches considered. To analyze the benefits of including
S1 SAR data, we perform an ablation study and compare
a multisensor model against one only utilizing multispectral
S2 input. Table II compared the results of the multimodal
model with an ablation version not using S1 SAR data. The
comparison illustrates the benefits of including SAR data
when reconstructing cloud-covered pixels. Next, we conduct
an ablation experiment to assess the additional benefits of
utilizing the introduced perceptual loss. Table III compared
the results of our proposed model with an ablation version
not using the perceptual loss (i.e., setting λperc = 0 in
eq 1). The outcomes imply that the usage of a perceptual
loss results in cloud-removed predictions of a higher quality.
Finally, we consider the extension of the proposed model
into networks integrating four and five time points of input
information. Table IV compared the performance of our model
as a function of input time points (n = 3, 4, 5). The results
indicate that considering longer time series may provide fur-
ther improvements in terms of reconstructing cloud-covered
information. In a final experiment on sequence-to-point cloud
removal, Table V reports the performance of our proposed
model (n = 3, with S1 and perceptual loss) as a function
of cloud coverage. That is, for a given interval of cloud
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Fig. 9. Exemplary predictions and cloud-free target images for all baselines reported in Table I. Columns: Four different samples from the test split. The
considered cases are cloud-free, partly cloudy, cloud-covered with no visibility except for a single time point, and cloud-covered with no visibility in any
time point. Rows: Predictions of least cloudy, mosaicing, ResNet, STGAN, ours (n=3), as well as the cloud-free reference image. The results show that
the considered models outperform the simple heuristics. Moreover, the illustrations underline that multitemporal and multimodal data may benefit image
reconstruction.
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TABLE II

COMPARISON OF THE PROPOSED SEQUENCE-TO-POINT MODEL
INCLUDING SAR OBSERVATIONS VERSUS AN ABLATION VERSION

WITHOUT SAR OBSERVATIONS IN TERMS OF NRSME, PSNR,
SSIM [38], AND THE SAM [39] METRIC. THE COMPARISON

ILLUSTRATES THE BENEFITS OF INCLUDING SAR DATA
WHEN RECONSTRUCTING CLOUD-COVERED PIXELS

TABLE III

COMPARISON OF THE PROPOSED SEQUENCE-TO-POINT MODEL

INCLUDING PERCEPTUAL LOSS VERSUS AN ABLATION VERSION

WITHOUT PERCEPTUAL LOSS IN TERMS OF NRSME, PSNR,
SSIM [38], AND THE SAM [39] METRIC. THE OUTCOMES

IMPLY THAT THE USAGE OF A PERCEPTUAL LOSS DURING

TRAINING RESULTS IN CLOUD-REMOVED PREDICTIONS

OF A HIGHER QUALITY AT TEST TIME

TABLE IV

QUANTITATIVE EVALUATION OF THE PROPOSED

SEQUENCE-TO-SEQUENCE MODEL WITH VARYING NUMBERS

OF TIME POINTS (n = 3, 4, 5) IN TERMS OF NRSME,
PSNR, SSIM [38], AND THE SAM [39] METRIC.

OUR MULTITEMPORAL NETWORK WITH

SAR GUIDANCE OUTPERFORMS THE
MULTITEMPORAL ABLATION MODEL

WITHOUT PRIOR SAR INFORMATION

TABLE V

PERFORMANCE OF OUR SEQUENCE-TO-POINT CLOUD REMOVAL METHOD

(n = 3, WITH S1 & WITH PERCEPTUAL LOSS) AS A FUNCTION
OF CLOUD COVERAGE. FOR A GIVEN INTERVAL, ALL n = 3

INPUT IMAGES ARE SAMPLED TO CONTAIN A CORRESPONDING

EXTENT OF CLOUDS. THE OUTCOMES SHOW THAT IMAGE

RECONSTRUCTION PERFORMANCE IS HIGHLY DEPENDENT
ON THE PERCENTAGE OF CLOUD COVERAGE. WHILE

PERFORMANCE DECREASE IS NOT STRICTLY

MONOTONOUS WITH AN INCREASE IN
CLOUD COVERAGE, A STRONG

ASSOCIATION PERSISTS

coverage, all n = 3 input images are sampled to contain
a corresponding extent of clouds. The outcomes show that
image reconstruction performance is highly dependent on the
percentage of cloud coverage. While performance decrease is
not strictly monotonous with an increase in cloud coverage,
a strong association persists.

TABLE VI

QUANTITATIVE EVALUATION OF BASELINE METHODS AND THE PROPOSED
SEQUENCE-TO-SEQUENCE MODEL IN TERMS OF ROOT MEAN

SQUARED ERROR (RSME), PSNR, SSIM, AND THE

SAM [39] METRIC. OUR MULTITEMPORAL NETWORK

WITH SAR GUIDANCE OUTPERFORMS THE CONSIDERED
BASELINES AS WELL AS THE MULTITEMPORAL

ABLATION MODEL WITHOUT PRIOR

SAR INFORMATION

D. Sequence-to-Sequence Cloud Removal

A key characteristic of training the sequence-to-sequence
cloud removal model described in Section III-B is the model
being trained directly on the time series of images one aims
to removes clouds from, without the use of any external
training data as in [33] and [29]. More specifically, the training
procedure teaches the network to replicate cloud-free pixels
and inpaint cloud-covered ones in the target sequence S2
according to the cost function Lall formulated in [29] as

Lall = λL2LL2 + λpercLperc (4)

LL2 = ||S2 · (1 − m), Ŝ2 · (1 − m)||2 (5)

Lperc = ||VGG16(S2) · (1 − m), VGG16(Ŝ2) · (1 − m)||2 (6)

where λL2 = 1 and λperc = 0.01 refer to hyperparameters
that linearly combine the terms constituting Lall. L2 is a
pixel-wise reconstruction loss evaluated over the cloud-free
pixels via an auxiliary VGG16 network [40] as explained
before. The pseudo-code formalizing the intrinsic learning
procedure is given in Algorithm 1 described in Section III-B
and further justifications are stated in the original work
of [33]. For a given target sequence, the network is trained
for 20 passes with batches of n = 5 samples consisting of
temporally adjacent images, for 100 iterations per pass. The
network is optimized via ADAM [44] with a learning rate of
0.01 and the hyperparameters of Algorithm 1 set as stated
in [29].

To quantitatively evaluate the considered model on
SEN12MS-CR-TS, we propose the following protocol for a
sequence-to-sequence cloud removal task: For a given target
sequence, the least cloud-covered S2 observation is identified
and denoted as a target image S2t . The most cloudy S2
sample is observed and denoted as a source image S2s . The
cloud-covered pixels of S2s according to a cloud mask m
are alpha-blended with the cloud-free pixels of S2t simi-
lar to the approach of [3]. Finally, the cloud-removed pre-
diction Ŝ2t is then compared against the originally cloud-
free S2t in order to get a measure of goodness of cloud
removal.

Table VI shows the results of the proposed network on
the sequence-to-sequence cloud removal task following the
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Fig. 10. Illustration of baseline methods for the sequence-to-sequence cloud removal task. The presented results show a cloudy image to be declouded,
as well as the predictions via Riemannian Robust Principal Component Pursuit (RPCP) [45], Nonnegative Matrix Factorization Incremental Subspace
Learning (NMFISL) [46], Probabilistic Nonnegative Matrix Factorization (PNMF) [47], Manhattan Nonnegative Matrix Factorization (MNMF) [48], and
Online Stochastic Tensor Decomposition (OSTD) [49]. The results indicate that the presence of large and dense clouds poses a severe challenge for the
considered methods. Most baselines decloud the image except for some residual artifacts, and some techniques display discolorization. For comparison with
ours (no S1), ours (with S1), and the cloud-free target image, see Fig. 11.

aforementioned protocol. Furthermore, the considered model
is compared against an ablation model, conditioned on random
Gaussian noise as in [33] and [29] in place of the meaningful
S1 input observations. Example outcomes of sequence-to-
sequence cloud removal on a given ROI are depicted in Figs. 1
and 10. Furthermore, Fig. 11 provides a qualitative comparison
between the predictions conditioned on SAR versus no prior
information, underlining the benefits of multimodal informa-
tion. The results highlight that the internal learning approach
can learn to reconstruct cloud-covered pixels on a very limited
amount of data. Furthermore, the results demonstrate that
including SAR data results in performance benefits over the
single-sensor baseline.

V. DISCUSSION

The main contribution of this work is in curating and pro-
viding SEN12MS-CR-TS, a multimodal multitemporal data set
for cloud removal in optical satellite imagery. Our large-scale
data set covers a heterogeneous set of ROIs sampled from
all over earth, acquired in different seasons throughout the
year. Given that the contained observations cover clear-view,
filmy, as well as nontransparent dense clouds, the objective of
reconstructing cloud-covered information poses a challenging
task for the considered methods and future approaches. For
the sake of demonstrating the usefulness of the presented
data set, we propose a sequence-to-point as well sequence-
to-sequence cloud removal network. The considered methods
are evaluated in terms of pixel-wise and image-wise metrics.
We provide evidence that taking time-series information into
account is facilitating the reconstruction of cloudy pixels and
that including multisensor measurements does further improve
the goodness of the cloud-removed predictions, justifying
the design of SEN12MS-CR-TS to include multitemporal
and multimodal data. The major difference to the preced-
ing mono-temporal SEN12MS-CR data set [15] for cloud
removal is that SEN12MS-CR-TS features a time series of
30 samples per ROI. This allows for developing methods that

integrate information across time to more faithfully reconstruct
cloud-obscured measurements. The sensitivity to temporal
information may be particularly valuable for future research
investigating the benefits of cloud removal to time-sensitive
applications, such as change detection. On the other side, there
is a tradeoff in terms of size, and while SEN12MS-CR-TS is
more than twice as large as its mono-temporal precursor, the
latter contains about two times as many ROIs sampled over
all continents. However, both data sets are fully compatible,
meaning that holdout ROIs of one belong to the test split of
the other data set and vice versa. As there is no geo-spatial
overlap across splits between both data sets, they can be
combined for training or validation purposes. Finally, the two
data sets exhibit a comparable extent of cloud coverage—about
50% and 48%, respectively, both covering the full spectrum
from semitransparent haze to thick and dense clouds. A dis-
crepancy between both data sets is in SEN12MS-CR having
between 25% and 50% overlap between neighboring patches
(following the design of [43]), whereas SEN12MS-CR-TS
has no intersection between adjacent samples. SEN12MS-CR
contains 122 218 patch triplets of S1, cloudy S2, and cloud-
free S2 data, whereas SEN12MS-CR-TS consists of 30 time
samples for each of the 15 578 patch-wise observations, for
every S1 and S2 measurement. Due to the differences in
preprocessing the two data sets are not coregistered patch-
wise but, importantly, they share a common definition of
ROIs as well as train and test splits. This way, they are
compatible with one another such that SEN12MS-CR-TS can
be utilized for time-series cloud removal, while SEN12MS-CR
can provide further geospatial coverage of additional ROIs on
individual time points. Thanks to the different designs of both
data sets, they may prove beneficial facilitating a variety of
downstream tasks, such as semantic segmentation [43], scene
classification [2], or change detection [5], even in the presence
of clouds.

Beyond the design of our novel data set, additional contri-
butions of this work are in introducing the internal learning
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Fig. 11. Illustrations on the effect of prior guidance via SAR information.
Columns: SAR input to the SAR-conditioned model, cloud-free prediction of
the model conditioned on Gaussian noise, cloud-free prediction of the model
conditioned on SAR information, and cloud-free observation as a reference
image. The structural information provided by the SAR input provides a strong
prior to the model, guiding it toward learning to remove clouds in the cloudy
input time series.

approach to cloud removal in optical satellite data, as well
as demonstrating that SAR-to-optical cloud removal performs
better than the original noise-to-optical translation framework.
While our data set aims to provide a global distribution
of samples, we think that the internal learning approach to
cloud removal may be of particular interest for remote-sensing
practitioners focusing on a single a spatially confined ROI,
as no further external data is necessary.

Fig. 12. Histogram of temporal differences between paired observations.
The mean time differences across all paired observations are 2.61 (± 2.41),
indicating a close proximity between paired samples.

VI. CONCLUSION

As a large extent of our planet is covered by haze or
clouds at any given point in time, such atmospheric distortions
pose a severe constraint to the ongoing monitoring of earth.
To approach this challenge, our work presented SEN12MS-
CR-TS, a multimodal and multitemporal data set for training
and evaluating global and all-season cloud removal methods.
Our data set contains Sentinel-1 and Sentinel-2 observations
from over 80000 km2 of landcover, distributed globally and
recorded through the year. The globally distributed ROIs are
large-sized and capture a heterogeneous mass of landcover.
We demonstrated the practicality of SEN12MS-CR by con-
sidering two methods: First, a model for sequence-to-point
cloud removal. Second, a network for sequence-to-sequence
cloud removal which, to our knowledge, provides the first
case a model preserving temporal information is proposed in
the context of cloud removal. Both methods benefited from
the presence of coregistered and paired SAR measurements
contained in our data set. The conducted experiments highlight
the contribution of our curated data set to the remote-sensing
community as well as the benefits of multimodal and multitem-
poral information to reconstruct noisy information. SEN12MS-
CR is made public to facilitate future research in multimodal
and multitemporal image reconstruction.

APPENDIX

TEMPORAL COINCIDENCE OF PAIRED OBSERVATIONS

Full-scene observations of Sentinel-1 and Sentinel-2 are
collected within a 14-day time window in a paired man-
ner, as specified in Section II-A. To further analyze the
temporal distance within paired data, Fig. 12 illustrates the
empirically observed coincidences within SEN12MS-CR-TS.
The mean time differences across all paired observations are
2.61 (± 2.41), which is considerably smaller than the inter-
val bound and implies a close proximity between paired
samples.
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