Yu, Tianze and Lin, Jinazhe and Hua, Yuansheng and Zhu, Xiao Xiang and Wang, Z. Jane (2022) SCIDA: Self-Correction Integrated Domain Adaptation From Single- to Multi-Label Aerial Images. IEEE Transactions on Geoscience and Remote Sensing, 60, p. 5803313. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3170357. ISSN 0196-2892.
PDF
- Preprint version (submitted draft)
5MB |
Official URL: https://ieeexplore.ieee.org/document/9762917
Abstract
Most publicly available datasets for image classification are with single labels, while images are inherently multilabeled in our daily life. Such an annotation gap makes many pretrained single-label classification models fail in practical scenarios. For aerial images, this annotation issue is more concerned: Aerial data naturally cover a relatively large land area with multiple labels, while annotated aerial datasets currently publicly available (e.g., UCM and AID) are single-labeled. As manually annotating multilabel aerial images (MAIs) would be time-/ labor-consuming, we propose a novel self-correction integrated domain adaptation (SCIDA) method for automatic multilabel learning. SCIDA is weakly supervised, i.e., automatically learning the multilabel image classification model from using massive, publicly available single-label images. To achieve this goal, we propose a novel labelwise self-correction (LWC) module to better explore underlying label correlations. This module also makes the unsupervised domain adaptation (UDA) from single-label to multilabel data possible. For model training, the proposed method uses single-label information yet requires no prior knowledge of multilabeled data and predicts labels for MAIs. Through extensive evaluations, the proposed model, which is trained with single-labeled MAI-AID-s and MAI-UCM-s datasets, achieves much better performances than comparative methods on our collected multiscene aerial image dataset. The code and data are available on GitHub ( https://github.com/Ryan315/Single2multi-DA ).
Item URL in elib: | https://elib.dlr.de/192696/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | SCIDA: Self-Correction Integrated Domain Adaptation From Single- to Multi-Label Aerial Images | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | April 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 60 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2022.3170357 | ||||||||||||||||||||||||
Page Range: | p. 5803313 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Aerial image, graph convolutional network (GCN), MAI dataset, noise, OpenStreetMap (OSM), unsupervised domain adaptation (UDA) | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Deposited On: | 20 Dec 2022 11:01 | ||||||||||||||||||||||||
Last Modified: | 18 Jul 2023 13:36 |
Repository Staff Only: item control page