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SCIDA: Self-Correction Integrated Domain
Adaptation from Single- to Multi-label Aerial

Images
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Abstract—Most publicly available datasets for image classifi-
cation are with single labels, while images are inherently multi-
labeled in our daily life. Such an annotation gap makes many
pre-trained single-label classification models fail in practical
scenarios. This annotation issue is more concerned for aerial
images: Aerial data collected from sensors naturally cover a
relatively large land area with multiple labels, while annotated
aerial datasets, which are publicly available (e.g., UCM, AID),
are single-labeled. As manually annotating multi-label aerial
images would be time/labor-consuming, we propose a novel self-
correction integrated domain adaptation (SCIDA) method for
automatic multi-label learning. SCIDA is weakly supervised, i.e.,
automatically learning the multi-label image classification model
from using massive, publicly available single-label images. To
achieve this goal, we propose a novel Label-Wise self-Correction
(LWC) module to better explore underlying label correlations.
This module also makes the unsupervised domain adaptation
(UDA) from single- to multi-label data possible. For model
training, the proposed model only uses single-label information
yet requires no prior knowledge of multi-labeled data; and it
predicts labels for multi-label aerial images. In our experiments,
trained with single-labeled MAI-AID-s and MAI-UCM-s datasets,
the proposed model is tested directly on our collected Multi-scene
Aerial Image (MAI) dataset. The code and data are available on
GitHub(https://github.com/Ryan315/Single2multi-DA).

Index Terms—Unsupervised Domain Adaptation, Aerial Im-
age, GCN, MAI Dataset, Noise, OSM.

I. INTRODUCTION

W ITH easy access to increasing aerial data from satel-
lites/ Unmanned Aerial Vehicles (UAVs), annotating

the newly collected aerial data is of great importance. How-
ever, obtaining clean multi-label annotations manually for
aerial data has long been a challenging task. A recent trend
for aerial data annotation is resorting to crowdsourcing data,
such as OpenStreetMap (OSM). OSM, an editable map, is
built/annotated by volunteers from scratch. However, the qual-
ity of such a manually annotated map may not be satisfying.
Incompleteness and incorrectness are two primary concerns,
as illustrated in the example in Fig. 1.

Instead of resorting to crowdsourcing data, recent advances
in machine learning (ML) make automatic annotation of aerial
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Fig. 1. (a) Single-label aerial image examples from the MAI-AID-s dataset,
which serves as the source domain data. (b) The top is a multi-label aerial
image from the MAI dataset, which serves as the target domain data. The
bottom shows the corresponding noisy annotations from OSM for the top
image. As indicated, “Center” is incorrectly annotated as “Stratus”, and
“Parking lot” is missed.
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images possible. To train a reliable multi-label aerial image
classification framework, we need to (1) design an efficient
ML model architecture; and (2) learn with massive annotated
data. However, collecting such multi-label aerial images with
an exhaustive, consistent list of annotations requires significant
time and effort. Furthermore, there is almost no publicly
available multi-label aerial image dataset, and the online anno-
tations from OSM are not always reliable. Training the model
with noisy labels from OSM could lead to poor classification
performance. Therefore, direct training of a multi-label aerial
image classification model remains challenging.

An alternative way is to train the model with single-labeled
aerial image data, since annotating a single-label aerial image
is much easier than a multi-label one. Moreover, there are
publicly available single-labeled datasets, e.g., AID and UCM
datasets, which have covered almost all classes of interest for
aerial images. Therefore, they could provide intense supervi-
sion for training a multi-label classification model. However,
using the model trained by single-label data to predict the
labels for a multi-label image is a challenging task. This task
is illustrated in Fig. 1, where single-labeled data (the source
domain) is shown in Fig. 1(a), and the corresponding multi-
label data including the same labels (the target domain) is
shown in Fig. 1(b). To realize multi-label aerial image classi-
fication using single-labeled data, we formulate the problem
as a domain adaptation task and propose a novel framework
where prior information from single-label data can be adapted
to multi-label aerial images.

To our knowledge, this is the first work to examine the chal-
lenging task of learning a multi-label aerial image classifier
on large-scale datasets (the target domain) by using publicly
available single-label data (the source domain). Our major
contributions are as follows:
• We propose a challenging single- to multi-label domain

adaptation task. The target domain multi-label data are
unannotated, large-scale, unconstrained aerial images in
real-world scenarios, while the source domain is the
annotated single-label aerial data publicly available (e.g.,
AID [1], UCM [2]).

• We propose a novel Self-Correction Integrated Domain
Adaptation (SCIDA) framework, from single- to multi-
label aerial images. Different from existing feature-based
unsupervised domain adaptation methods, our framework
explores the underlying label correlations by introduc-
ing the Label-Wise self-Correction (LWC) module. With
GCN as the backbone, the LWC explores label correla-
tions and iteratively corrects the pseudo labels learned by
our domain adaptation module (the DWC branch, as in
Fig. 2).

• We empirically compare labeling strategies for multi-
label datasets to explore the learning potential of using
single labels. Given the same annotation budget, our
experiments show that the networks trained with single-
label images can provide competitive performances as
those learned with a fully annotated subset of multi-label
images.

• A new single-multi-label aerial image (MAI) dataset
with clean labels is collected in our study to make the

experiment possible. It will be the first web available
dataset for multi-label aerial images.

II. RELATED WORK

A. Partial Multi-Label Learning (PML)

Multi-label learning has been an active research topic of
practical importance, as images collected in the wild are
always with more than one annotation [3]. Conventional
multi-label learning research [4][5][6] mainly relies on the
assumption that a small subset of images with full labels are
available for training. However, this may be difficult to satisfy
in practice, as manually yielded annotations always suffer from
incomplete and incorrect annotation problems, as illustrated
in Fig. 1. Therefore, partial multi-label learning is emerging,
which aims to learn a multi-label classification model from
ambiguous data [7], [8], [9]. Traditional methods treat missing
labels as negatives and wrong labels as positives during the
model training process [10], [11], [12], [13], [14], while it
could lead to degradation of the classification performance.

To mitigate the problem of missing or wrong labels, a
novel approach for partial label learning is to treat missing
labels as a hidden variable via probabilistic models and predict
missing labels by posterior inference [15], [16]. The work in
[17] models missing labels as negatives, and then corrects the
induced error by learning a transformation on the output of
the multi-label classifier. However, this approach requires high
memory and is hard to optimize. Scaling these models to large
datasets would be difficult [18], [19]. Another recent trend for
partial label learning can be found in [20], [21], [22], which in-
troduces curriculum learning and bootstrapping to increase the
number of annotations. During model training, this approach
uses the partially annotated data and the unannotated data
whose predicted labels are with the highest confidences [23],
[24]. Curriculum learning is further combined with the graph
model in [25] to better capture the label association when
exploiting the unlabeled data during training. This approach
still relies heavily on the unlabeled images, which would taint
the training data when they are attached to incorrect labels.
This problem is called semantic drift.

Different from the existing models, we propose a novel
approach for multi-label learning with the extreme case of par-
tial multi-label data, namely the single label data. Compared
with commonly used partial multi-label data, single-label data
are collected specifically for a single class. Therefore, such
data are much easier to acquire online, and do not have the
incomplete or incorrect annotation problem. In this paper, for
the first time, we introduce domain adaptation to train the
multi-label classification model using the annotated single-
label data.

B. Domain Adaptation (DA)

Domain adaptation is a method to share knowledge between
data from different datasets. DA aims to minimize the data
gap between datasets [26], [27], [28]. Here, we formulate the
knowledge transfer between the single-label data and multi-
label data as a domain adaptation problem in our task. Recent
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Fig. 2. The flowchart of training the proposed SCIDA with the ResNet backbone. The flow mainly consists of the DWC branch and the LWC branch. Gcm

and Gt are feature generators; and C1 and C2 represent classifiers. “wFL” means “weighted focal loss”, and δ controls the learning depth at each training
step.

years have witnessed the exploitation of adversarial domain
adaptation, which stems from the technique proposed in [29].
The principal idea is to introduce adversarial learning by one
feature generator and one domain discriminator [30], [31],
[32]. The generated features from the source domain and the
target domain are aligned to confuse the domain discriminator
until it cannot figure out which domain the features are
from [33], [34], [35], [36]. One major limitation of existing
adversarial domain adaptation methods is that they are not
task-specific. For instance, the generated features in the DA
model might not work well for the classifier [37], [38], [39].
This problem could be even more severe for our task, since the
classification tasks for the source and target domains are two
different types (one is single-label classification, and the other
is multi-label classification). A recent advance for task-specific
DA is the Maximum Classifier Discrepancy (MCD) method,
which is proposed to make the adversarial mechanism task-
specific by constructing adversarial learning between task-
specific classifiers and feature generator [40], [41], [42]. How-
ever, this method couldn’t generalize well when the classifiers
from two domains are not the same. To solve this problem,
here we propose our new domain adaptation framework.

III. METHOD

In this section, we present the proposed SCIDA model for
single- to multi-label domain adaptation.

A. Overview

In the proposed SCIDA framework, we need to correlate the
domain-wise data, and also explore the label-wise correlation
among target domain data. This label-wise correlation is used
for self-correction in the framework.

For the domain-wise correlation (DWC), we propose using
the domain adaptation to correlate the two domains, due to the
large domain gap between single-label and multi-label data.
For the label-Wise self-Correction (LWC), due to the lack of
correlation for the one-hot encoded source domain data, the
LWC is learned with self-supervision in the target domain. The

Graph convolutional network (GCN) is introduced to model
the LWC directly. The LWC is used for self-correction for
multi-label classification.

The general flowchart of the proposed model is illustrated
in Fig. 2, which is mainly made up of the DWC branch and
the LWC branch. The inputs of the proposed framework are
introduced as follows. The annotated source domain data is
represented with Xs = {xis, yis}

Ns
i=1 (x and y represent the

data and the label respectively), while the target domain data
is represented with Xt = {xit}

Nt
i=1 where N represents the

number of images in the dataset.

B. Domain-wise Correlation

For the domain-wise correlation, the goal of this branch
is to align the features from source and target domains
by utilizing two task-specific classifiers as a discriminator.
The output of this branch is the pseudo label for target
domain data. This branch is made up of three parts: a com-
mon feature extractor Gcm, two classifiers C1 and C2, and
a classifier discriminator Dt. The extracted source domain
feature f cms = Gcm(Xs; θGcm

) and target domain feature
f cmt = Gcm(Xt; θGcm) are the inputs to the two classifiers.
We need to detect target samples that largely deviate from
the distribution of the source data, and align features from the
two domains. As two classifiers are assumed to be effective on
source domain samples with full annotations, the classification
results from these two classifiers should be the same. While
the target samples deviate from the source data distribution,
and are likely to be classified differently by the two distinct
classifiers. Our goal is to minimize the performance gap
between the two classifiers for target domain samples. In our
framework, this discrepancy for the two classifiers can be
calculated in the target domain by Dt. If the discrepancy is
minimized, we assume the data feature from the target domain
is aligned with the source domain. And then we can use the
source domain annotations to supervise the classification of
the target domain data. The general training of this branch
can be found in Sec. IV.
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However, different from regular task-specific domain adap-
tation in [40], the major challenge for domain adaptation from
single-label to multi-label is the sharing of classifiers. If the
single-label classifier is trained to generate multiple labels
by setting a threshold for probability, the single-label source
data will suffer from the problem of imbalanced training data.
The imbalance issue contains two aspects: the imbalance of
positive and negative samples in each class, and the imbalance
of the samples in different classes in the entire dataset. In this
task, there are much fewer positive samples than the negative
samples, with a ratio of about 1/K (K is the number of
classes). To overcome this problem, we propose to use the
weighted focal loss (wFL) instead of the regular cross-entropy
loss for the optimization of the model, which is formulated as
below:

L =−
K∑
i=1

pβ(αy
i(1− pi(yi |x ))γ log pi(yi |x )

+ (1− α)(1− yi)pγi (y
i |x ) log(1− pi(yi |x ))),

(1)

where pβ is the proportion of class-wise samples with respect
to all the data in the dataset and fulfills pβ ∈ (0, 1) &∑C
β=1 pβ = 1. α and γ here are empirically set as 0.25 and

2 respectively [43].
For the multi-label target dataset, the imbalance is eased

to some extent. However, as annotations are not available for
the target domain data, the classification in the target domain
doesn’t generate a loss for the supervision of the model.
Instead, the discrepancy between the two classifiers in the
target domain is regarded as the loss and used to optimize
the model.

C. Label-wise Correlation

For the Label-Wise self-Correction (LWC) branch, the goal
of this branch is to self-correct the pseudo label generated by
the DWC branch. This branch is made up of two components,
including a separate target convolution neural network with
Gt being the backbone for image classification, and a graph
convolution network being the backbone for label correlation
learning.
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Fig. 3. An example of δ. The right shows the image, and the left shows the
predicted labels.

Algorithm 1: Correlation matrix construction.
1 Stage I: Calculate the co-occurrence label
2 Input: Pseudo ground truth Y pseudo

t
3 Output: Correlation matrix A;
4 while epoch ≤ max epoch do
5 for batch← 1 to N do
6 for idx i, idx j ← 1 to num categories do
7 if Y pseudo

t [idx i] & Y pseudo
t [idx j] 6= 0 then

8 cor count[idx i][idx j] += 1
9 end

10 end
11 end
12 end
13 Stage II: Correlation matrix normalization
14 for idx ← 1 to num categories do
15 cor count[idx] = cor count[idx]∑

cor count[idx][:]

16 end
17 return cor count

1) Correlation matrix construction: Label-wise correlation
works by propagating label information between nodes based
on the correlation matrix. It’s a crucial point of how to con-
struct the correlation matrix. As in the proposed unsupervised
scenario, there’s no pre-defined correlation matrix in the target
task. We will construct the correlation matrix in a target-data-
driven approach based on the pseudo ground truth labels. The
procedure of constructing the correlation matrix is detailed
in Alg. 1. For the pseudo ground truth, we introduce a hyper-
parameter δ for controlling the number of pseudo ground truth
labels for each image, as shown in Fig. 3. As there’s no
prior label knowledge for the target domain data and the total
number of labels for each image varies, we assume that the
percentage of pseudo ground truth labels per image is a fixed
constant δ (e.g., suppose the dataset has 20 labels in total, with
δ = 0.2, the number of pseudo ground truth labels per image
is 4). δ is used to determine how many nodes in GCN need
to be updated in each iteration. An intuition is that δ is set as
the average number of labels per image in the pseudo ground
truth. Besides, as LWC branch is supervised by the pseudo
labels generated by DWC branch, introducing δ will help to
smooth the decision boundary of the classification. In this way,
the LWC could converge towards the correct direction, and
meanwhile is not restricted to the output of DWC branch.
What’s more, when calculating the co-occurrence of labels,
some rare co-occurrence in the labels will introduce much
noise and cause a long-tail distribution problem. Introducing
the parameter δ could solve the long-tail distribution problem
to a great extent. In the ablation study, we also analyzed the
effects of the parameter δ.

2) Label-wise GCN: The inputs of this branch include
four parts: the original target domain data, the target domain
label set, the pseudo ground truth, as well as the normalized
adjacency matrix Â learned from the DWC branch (which
represents the occurrence frequency of each label). We also
need to point out that the label in the GCN module is different
in a conventional convolution neural network, and is intended
to solve the problem under a non-Euclidean topological graph.
The computation graph is generated based on the label em-
bedding of each node and its neighbors. We follow a common
practice[44] to deploy GCN:

H(l+1) = σ(ÂH(l)W (l)) (2)
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Algorithm 2: Training for SCIDA.
1 Input: Xs, Xt, Ys, Â, labels;
2 Output: Parameters for Gcm, C1, C2, GCN, and Gt;
3 while epoch ≤ max epoch do
4 for batch← 1 to N do
5 Pseudo labels generation: Input the normalized source and target

domain data to optimize DWC branch by minimizing Eq. (3), (4),
(5), and generate Y pseudo

t ;
6 Self Correction: Update both DWC and LWC by minimizing Eq.

(6), which indicates the difference between Y pseudo
t and

YLWC .
7 end
8 end

where Â is the normalized adjacency matrix mentioned above,
H(l) denotes the label embedding at the l-th layer in GCN,
W (l) is a learnable transformation matrix, and σ acts as a
non-linear operation. We employ LeakyReLU to implement
this operation.

The general operation routine for this branch is as follows:
The feature vector of target domain data is first extracted by
Gt(xt; θGt). This feature vector is fed to two fully connected
(FC) layers and a 2048 × 1 feature vector fFC is generated.
For the input of the GCN model, GloVe[45] is used to generate
the embedding of labels. Then the output of GCN (a 2048×K
matrix) and fFC are fed to a scalar product layer to produce
a classification result YLWC for this branch. The difference
between the classification result Y pred2t from C2 (we assume
C1 and C2 can get a unified result finally) and YLWC is used
to generate a binary cross-entropy loss (BCE loss), which will
optimize all components in the LWC branch.

IV. TWO-STAGE MODEL TRAINING

In the training procedure, we learn the parameters of DWC
and LWC branches jointly and iteratively. In the primary stage,
we initialize the pseudo label by the DWC branch. In the
second stage, both branches are trained to optimize the pseudo
label. The iterative training way is introduced as follows, and
concluded in Alg. 2.

A. Pseudo labels generation in DWC

Pseudo labels generation is generated by an adversarial
domain adaptation way in DWC branch [40]. We first initialize
the weights of the feature generator Gcm and the classifiers
C1, C2, and freeze other components. The model in this stage
is optimized by the weighted focal loss calculated on the
annotated source domain data. This process can be formulated
as:

min
θGcm ,θC1

,θC2

LwFL(Xs,Ys) (3)

here L is defined in Eq. (1).
We initialize the parameters of Gcm, C1, C2 and train the

framework for classification in the source domain, as well as
to achieve an adversarial training ready state. Then we use
an adversarial manner to train the two classifiers C1 and C2

using the domain discriminator Dt, and optimize the weights
of Gcm.

To be more specific, we first maximize the discrepancy loss
generated by Dt for target domain data. This loss is used

for optimizing C1 and C2. The purpose is to identify target
samples whose extracted features deviate the most from the
distribution of the source domain features. At the same time,
we need to keep C1 and C2 effective for the classification of
the source domain data. We formulate this by

min
θGcm ,θC1

,θC2

LwFL(Xs, Ys)− Ldis(Y pred1t , Y pred2t ) (4)

here Y pred1t , Y pred2t represent multi-label predictions from C1

and C2 respectively, and Ldis is computed with a scalar
subtraction between these two [40].

Then, adversarial to Eq. (4), we minimize the classifier
discrepancy loss by optimizing the weights of Gcm, in order
to encourage uniformed classification results from the two
classifiers. C1 and C2 are frozen now, and the objective
function is

min
θGcm

Ldis(Y pred1t , Y pred2t ) (5)

Finally, we assume Y predt from C2 to be the Y pseudot . We
need to point out that the Y predt from C1 is equal to Y predt

from C2 (Y pseudot ), when the training converges.

B. Self Correction

Self Correction is achieved unsupervised in the target
domain for self-correcting the pseudo label Y pseudot . Only
by learning the label correlation with GCN (which can be
understood as a self-supervision) but without extra supervi-
sions/annotations, the Y pseudot is optimized and corrected.

In this stage, we first get YLWC from the LWC branch for
the target domain data. This obtained YLWC from the scalar
product operation (as in Fig. 2) is used for self-correction
for the pseudo label Y pseudot . Noted that here YLWC is the
label predictions of target domain samples from LWC branch.
YLWC can be represented as YLWC = {ŷ1, ŷ2, ..., ŷN},
supposing there are N target domain samples. As we note
that the choice of different losses in this stage doesn’t make
noticeable difference, we empirically choose the BCE loss as
below:

min
θGt ,θGCN ,θGcm ,θC1

,θC2

LBCE(YLWC , Y
pseudo
t ) (6)

and LBCE for sample xi is further defined as

LBCE = − 1

K

K∑
i=1

(yi log(ŷi) + (1− yi) log(1− (ŷi))) (7)

yi is the pseudo labels from DWC branch. We need to point
out that both yi and ŷi are variables being optimized, and the
final convergence is only realized when the yi equals to ŷi.
This BCE loss will be used to optimize the parameters of the
whole network, including both DWC and LWC branches.

These two stages will iterate until convergence in the
training process. Finally, Y pseudot will stay unchanged, and
we assume it as Ypred in the testing phase.
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Fig. 4. Examples images with multiple labels from MAI-AID-m dataset. The labels are: (a) baseball, parking lot, park, river; (b) airport, forest, lake; (c)
commercial, bridge, parking lot, residential; (d) beach, bridge; (e) farmland, commercial, parking lot; (f) forest, river; (g) commercial, lake, parking lot,
residential, storage tank; (h) stadium, soccer, residential, parking lot; and (i) river, bridge, commercial.
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sea
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Fig. 5. Examples with object level annotations from the MAI-UCM-m dataset. The annotations are: (a) beach, sea, residential, forest, parking lot; (b) airport,
farmland, parking lot, runway; (c) commercial, residential, forest, parking lot, baseball, tennis; and (d) sparse shrub, forest, baseball, residential, parking lot.

V. EXPERIMENTS

A. Datasets, Setup, and Evaluation Metrics

1) MAI Dataset: Data is playing an especially critical role
in enabling computers to interpret images as compositions of
objects. Based on the scenario described above, we created a
new dataset named MAI, which contains images and ground-
truth annotations for the single- to multi-label domain adap-
tation task. The proposed MAI dataset contains two subsets,
MAI-AID and MAI-UCM. Besides, each subset is in pairs,
which contains one single-label dataset and one multi-label
dataset. The statistical parameters of the dataset is detailed in
Table. I and Fig. 7.

MAI-AID As a large-scale aerial image dataset, AID is
introduced in 2017[1], which collects sample images from
Google Earth imagery. The original AID dataset is made
up of 30 categories, including 10,000 images. 7,050 im-

ages from 20 categories are collected from AID dataset and
used as the single-label dataset named MAI-AID-s. 3,239
images with exactly the same 20 categories are collected
from OpenStreetMap(OSM)[?] which is a collaborative project
to create a free editable geographic database of the world
and named MAI-AID-m. The difference lies in the fact that
the annotation of MAI-AID-s is single-label based and the
annotation of MAI-AID-m is multi-label based. All the images
in MAI-AID-m are labelled by the specialists in the field of
remote sensing image interpretation. Some samples of MAI-
AID-m dataset are exhibited in Fig. 4.

MAI-UCM UC Merced Land Use Dataset(UCM)[2] is an
aerial image dataset whose images are manually extracted
from the USGS National Map Urban Area Imagery collection
for various urban areas around the country. The original UCM
dataset is made up of 21 categories, including 2,100 images.
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(a) Correlation visualization of MAI-AID-m. (b) Correlation visualization of MAI-UCM-m.

Fig. 6. Correlation visualization of the proposed MAI dataset. Here grey lines show all connections between label pairs; the linewidths represent the correlation
values between label pairs; the categories with more and less occurrence are highlighted in different colors for demonstration. I.e., they are ‘Residential’ and
‘Train Station’ in MAI-AID-m, and they are ‘Parking Lot’ and ‘Runway’ in MAI-UCM-m respectively.

1,700 images from 17 categories are collected from UCM
dataset and used as the single-label dataset named MAI-
UCM-s. 1,799 images with exactly the same 17 categories
are collected from OSM and named MAI-UCM-m. Similar
to MAI-AID-m, the images of the MAI-UCM-m are also
annotated with multi labels. Fig. 5 exhibits four examples of
MAI-UCM-m dataset with object level annotations.

Meanwhile, for multi-label datasets, there exist inner con-
nections and correlations between different categories. In Fig.
3, the adjacent matrix of the two multi-label datasets are
visualized in an intuitional way. The line connecting two labels
represents the connection and the width represents the correla-
tion degree between two categories. Among them, for instance,
“Residential“ and “Parking Lot“ have wide correlations with
other categories, while “Runway“ only have a few and the
closest correlation is with “Airport“.

2) Scene: MAI-AID-s to MAI-AID-m adaptation: For this
task, we consider 20 classes for single- to multi-label domain
adaptation, including Airport, Baseball, Beach, Bridge, Com-
mercial, Farmland, Forest, Lake, Parking Lot, Park, Port, Res-

idential, River, Roundabout, Soccer Field, Stadium, Storage
Tank, Train Station, Works, and Sea. 7,050 images from the
MAI-AID-s dataset are used as the source domain, while 3,239
images from the MAI-AID-m dataset are used as the target
domain. The number of source domain images in each class
is imbalanced, ranging from 200 to 700. The input images are
re-scaled to 512× 512. Examples can be found in Fig. 8.

MAI-UCM-s to MAI-UCM-m adaptation: For this task, the
datasets both have 17 classes, including Airport, Baseball,
Beach, Commercial, Farmland, Forest, Golf Course, Parking
Lot, Port, Residential, River, Runway, Sparse Shrub, Storage
Tank, Tennis Court, Works, Sea. In total, 1,700 images from
MAI-UCM-s are used as the source domain. 1,799 images
from MAI-UCM-m are used as the target dataset. The input
images are re-scaled to 224× 224. Examples can be found in
Fig. 8.

3) Setup: A pre-trained ResNet-101[46] is used as the
backbone of the feature generator. For different datasets, the
input images are randomly cropped and resized for data
augmentation. SGD is used for network optimization. The

TABLE I
PROPERTIES OF THE PROPOSED MAI DATASET

Dataset Size # Images # Categories # Avg. Labels # Max. Labels # Min. Labels Resolution

MAI-AID-s 1.7G 7,050 20 Single label annotation 600×600

MAI-AID-m 198.0M 3,239 20 3.73 9 1 512×512

MAI-UCM-s 176.3M 1,700 17 Single label annotation 256×256

MAI-UCM-m 105.5M 1,799 17 3.14 7 1 512×512
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(a) Annotation distribution of MAI-AID-m. (b) Annotation distribution of MAI-UCM-m.

(c) Image distribution of MAI-AID-m. (d) Image distribution of MAI-UCM-m.

Fig. 7. Distributions of the proposed MAI dataset. (a) and (b) show the category-wised annotation distributions. (c) and (d) show the image distributions,
with the number of labels in one image as the variable.

momentum is set to be 0.9, with a decay of 10−4. The batch
size is 4. The initial learning rate is 0.001 for the DWC
branch, and 0.01 for the LWC branch. Both learning rates
decay by a factor of 10 for every 30 epochs and 200 epochs.
The framework is implemented in PyTorch and trained with
two 2080-TI GPUs.

4) Evaluation Metrics: In experiments, for performance
evaluation, we report the average overall precision (OP), recall
(OR), F1 (OF1), F2 (OF2); and the top-3 OP, OR, OF1, OF2
[44]. Specifically, the F score (F1 when β = 1 and F2 when
β = 2) is calculated using:

Fβ =
(
1 + β2

)
· precision · recall
β2 · precision + recall

(8)

B. Qualitative and Quantitative Comparisons

In this section, the qualitative and quantitative results of the
proposed task and method are detailed. To fully explore the
capacity of our proposed network, the order and the content
of the experiments are designed on purpose. The proposed
task is single to multi-label domain adaptation, but there’s no
method reported in the literature for the proposed task yet. So
according to the structure of the proposed framework which is
consist of two main modules, DWC branch and LWC branch,
we have:

1) comparison with the state-of-the-art methods for multi-
label classification(e.g., the best performing methods
KSSNet [47] and GCN-ASL [48] and the most represen-
tative method ML-GCN [44]) to prove the effectiveness
of DWC branch.

2) comparison with the state-of-the-art methods for domain
adaptation approaches(e.g, the best performance unsu-
pervised domain adaptation method HAFN/SAFN [49]
and the most representative task-specific unsupervised
domain adaptation(UDA) method MCD [40]) to prove
the effectiveness of LWC branch.

3) comparison with the state-of-the-art methods for par-
tial label learning for multi-label classification(the
PRODEN[50] and the DNPL method [51]).

An intuitive comparison can be found in Fig. 9. In this
figure, 6 images with different number of labels ranging from
2 to 7 are chosen for demonstration. The multi label method
could have multiple prediction. But because of the existence of
the domain gap between the source and the target dataset, the
results are not satisfying. On the other hand, UDA method
shows a higher precision on the prediction than ML, but
because of the its own limitation, it cannot learn the correlation
between the categories of the target dataset. The proposed
method shows a much higher accuracy on predicting the
multiple labels in the proposed task.
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Fig. 8. Image mappings of MAI-AID-s → MAI-AID-m and MAI-UCM-s → MAI-UCM-m in the proposed domain adaptation task.
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Fig. 9. MAI-AID dataset: Visualization examples of the classification outputs. We use visualized results of ML-GCN [44] and MCD [40] for the results of
multi-label classification (ML) and unsupervised domain adaptation (UDA) respectively.

Comparisons with multi-label classification methods.
Quantitative results are reported in Table. II and III. The
results of SCIDA and SCIDA with optimized-δ are reported
separately. All comparison methods are trained on the anno-
tated single label data (MAI-AID-s/MAI-UCM-s) and tested
directly on the multi-label data (MAI-AID-m/MAI-UCM-m).

For the MAI-AID-s to MAI-AID-m task, it is evident that
the proposed SCIDA method provides superior classification
performances under all metrics. For SCIDA with optimized-δ,
the OP drops a bit because more related correlation estimation
is made, while OR/OF1/OF2 improve significantly. For the
MAI-UCM-s to MAI-UCM-m task, our proposed method
outperforms other comparison methods under all metrics ex-
cept OP. With a similar OP accuracy, the OR/OF1/OF2 are
improved by about 30%. For both tasks, the optimized SCIDA
consistently achieves better performances than the regular
SCIDA. Based on the performance comparisons with multi-
label classification methods (without domain adaptation) in
Table. II and III, we can verify that the correlation between
single- and multi-label data learned by domain adaptation is

significant.
Comparisons with domain adaptation methods. Since the
resolution of the MAI-UCM images is quite low, i.e., only
1/4 of that of MAI-AID images, almost all existing domain
adaptation methods fail on the MAI-UCM dataset, except
our proposed method with self-correction. Therefore, we only
report the performance comparisons for the MAI-AID-s to
MAI-AID-m task. As shown in Table. IV, the proposed
methods significantly outperform comparison methods under
all performance metrics. Especially the super performances
of the optimized SCIDA (with opt-δ) clearly demonstrate the
effectiveness of our proposed self-correction module (LWC
branch).
Comparison with partial label learning methods. Partial-
label learning(PLL) is a typical weakly supervised learning
problem, where each training instance consists of a data and
a set of candidate labels containing a unique ground truth
label. The task setting is the same as our source domain
dataset. The difference is that our target domain consists of
an uncertain number of labels. The candidate labels are set
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TABLE II
MAI-AID DATASET: CLASSIFICATION ACCURACY COMPARISONS WITH DIFFERENT MULTI-LABEL CLASSIFICATION METHODS

Method All Top 3
OP OR OF1 OF2 OP OR OF1 OF2

KSSNet [47] 0.2907 0.1616 0.2077 0.1774 0.3336 0.1303 0.1874 0.1484
GCN-ASL [48] 0.2026 0.1615 0.1797 0.1683 0.2742 0.0389 0.0681 0.0470
ML-GCN [44] 0.3831 0.0452 0.0809 0.0549 0.3837 0.0447 0.0801 0.0543

SCIDA 0.5432 0.2230 0.3162 0.2528 0.5496 0.2196 0.3138 0.2496
SCIDA(opt-δ) 0.4474 0.3242 0.3760 0.3431 0.4725 0.3185 0.3805 0.3407

TABLE III
MAI-UCM DATASET: CLASSIFICATION ACCURACY COMPARISONS WITH DIFFERENT MULTI-LABEL CLASSIFICATION METHODS

Method All Top 3
OP OR OF1 OF2 OP OR OF1 OF2

KSSNet [47] 0.2817 0.1804 0.2199 0.1944 0.2829 0.1769 0.2177 0.1912
GCN-ASL [48] 0.1844 0.3200 0.2340 0.2790 0.1579 0.0487 0.0745 0.0565
MC-GCN [44] 0.3585 0.0404 0.0726 0.0491 0.4127 0.0356 0.0656 0.0436

SCIDA 0.3358 0.3105 0.3227 0.3153 0.3412 0.2995 0.3190 0.3070
SCIDA(opt-δ) 0.3371 0.3219 0.3293 0.3248 0.3380 0.3192 0.3284 0.3228

TABLE IV
MAI-AID DATASET: CLASSIFICATION ACCURACY COMPARISONS WITH DIFFERENT DOMAIN ADAPTATION METHODS

Method All Top 3
OP OR OF1 OF2 OP OR OF1 OF2

SAFN [49] 0.4542 0.1216 0.1918 0.1425 0.4542 0.1216 0.1918 0.1425
HAFN [49] 0.4281 0,1147 0.1809 0.1344 0.4281 0.1147 0.1809 0.1344
MCD [40] 0.3327 0.0891 0.1406 0.1044 0.3327 0.0891 0.1406 0.1044

SCIDA 0.5432 0.2230 0.3162 0.2528 0.5496 0.2196 0.3138 0.2496
SCIDA(opt-δ) 0.4474 0.3242 0.3760 0.3431 0.4725 0.3185 0.3805 0.3407

TABLE V
MAI-AID DATASET: CLASSIFICATION ACCURACY COMPARISONS WITH PARTIAL-LABEL LEARNING METHODS

Method
All Top 3

OP OR OF1 OF2 OP OR OF1 OF2

PRODEN [50] 0.1559 0.0422 0.0664 0.0494 0.1559 0.0422 0.0664 0.049
DNPL [51] 0.1031 0.0402 0.0578 0.0458 0.1031 0.0402 0.0578 0.0458

SCIDA 0.5432 0.2230 0.3162 0.2528 0.5496 0.2196 0.3138 0.2496
SCIDA(opt-δ) 0.4474 0.3242 0.3760 0.3431 0.4725 0.3185 0.3805 0.3407

to be the number of the classes in the experiments. Besides,
all the algorithms have the same training, testing dataset and
the same number of annotations. Table. V and VI exhibit the
results on MAI-AID and MAI-UCM dataset respectively. We
can observe that our model surpasses the two competitors on
both datasets. Specifically, compared with the two partial label
learning methods, the proposed method improves the F1 and
F2 score by more than 0.3.

C. Ablation Studies

In this section, we perform ablation studies on the other
parts of the framework which are not covered in the experi-
ments above. Based on the task of MAI-AID-s to MAI-AID-m
adaptation, the ablation studies are separated into the following
aspects:

1) the effectiveness of GCN module
2) the effectiveness of LWC branch
3) the comparison of different loss functions
4) the influence of the parameter δ
5) stability of the proposed framework
6) the results under the same annotation budget

GCN module. In this study, we compare the results of the
proposed framework SCIDA with and without GCN module
to verify the importance of GCN. The results are shown in
Table. VII. According to the result, we could verify that, by
introducing GCN module, the performance of SCIDA is much
improved.
With/without LWC branch. In this part, we generally
evaluate the effectiveness of the proposed LWC branch. By
deleting the LWC branch directly and only optimizing the
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(a) Training curve when δ = 0.15. (b) Training curve when δ = 0.2.

Fig. 10. Ablation study: Training curves of SCIDA with different values of δ. The evaluation measures OP, OR, OF1 and OF2 of every epoch are logged
until the model converges and is stable. To better show the figures, the initial 10 epochs are skipped when plotting.

TABLE VI
MAI-UCM DATASET: CLASSIFICATION ACCURACY COMPARISONS WITH PARTIAL-LABEL LEARNING METHODS

Method
All Top 3

OP OR OF1 OF2 OP OR OF1 OF2

PRODEN [50] 0.1421 0.0560 0.0803 0.0637 0.1421 0.0560 0.0803 0.0637
DNPL [51] 0.1143 0.0478 0.0674 0.0541 0.1143 0.0478 0.0674 0.0541

SCIDA 0.3358 0.3105 0.3227 0.3153 0.3412 0.2995 0.3190 0.3070
SCIDA(opt-δ) 0.3371 0.3219 0.3293 0.3248 0.3380 0.3192 0.3284 0.3228

TABLE VII
ABLATION STUDY: CLASSIFICATION ACCURACY COMPARISONS OF THE PROPOSED SCIDA WITH AND WITHOUT GCN.

Method
All Top 3

OP OR OF1 OF2 OP OR OF1 OF2

SCIDA(None-GCN) 0.3423 0.3688 0.3551 0.3641 0.3652 0.2945 0.3260 0.3060
SCIDA 0.4474 0.3242 0.3760 0.3431 0.4725 0.3185 0.3805 0.3407

DWC branch, we can get around 0.14 for OF1 and 0.10 for
OF2. In comparison, SCIDA gets 0.38 for OF1 and 0.34 for
OF2. This result verifies that the proposed LWC module is
quite necessary for our framework.
BCE loss vs weight focal loss (wFL). In this part, we eval-
uate different loss functions for step-1 training. Specifically,
we investigate two loss functions, including the widely used
BCE loss and the proposed wFL. To make a fair comparison,
hyper-parameters under these two loss functions are tuned
specifically to achieve the best performance. The results of
the two loss functions are both selected when the model is

TABLE VIII
ABLATION STUDY: COMPARISONS WHEN USING DIFFERENT LOSS

FUNCTIONS

Method
All

OP OR OF1 OF2

BCE Loss 0.1747 0.2475 0.2048 0.2285

wFL 0.4546 0.2878 0.3524 0.3106

Top-3

BCE Loss 0.1480 0.0764 0.1008 0.0846

wFL 0.4654 0.2806 0.3501 0.3048

converged and stable. Table. VIII shows the results using
different loss functions on the MAI-AID-s to MAI-AID-m
task. We can see that the wFL clearly yields better accuracy
under all performance metrics.
Different values of δ for LWC branch. To explore the ef-
fects of δ on classification performance, we consider different
values of δ, ranging from 10% to 25%, as depicted in Fig. 11.
We can observe that, when δ is set as 20%, the performance is
the best. If δ is too small, the correlation learning in the GNN
will be slow and the training of the branch will be insufficient;
while when δ is set larger than 20%, redundant and useless
connections will seriously affect the LWC branch, resulting in
a worse overall performance. Therefore, we empirically set δ
as 20%.
Model stability. The proposed framework SCIDA is consist
of several components. The stability of the framework is quite
critical. In fact, the two-stage training manner introduced in
Sec. IV could ensure the stability of the model to a great
extent. To verify that, the training curve of SCIDA under
different δ values are plotted, as shown in Fig. 10. The
proposed method is quite stable under different conditions.
Same budget of annotations. In this experiment, we want
to demonstrate that with the same number of annotations,
when compared with the method directly trained on the
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Fig. 11. Ablation study: Performance evaluation when using different δ.

multi-label dataset, the proposed transfer method can yield
comparable results. First, the proposed SCIDA uses 5,000
images from the AID dataset for training. In comparison,
we train the state-of-the-art multi-label classification method
ML-GCN using the target MAI-AID images directly. As the
average number of annotations per image for MAI-AID is 3.4,
1,500 images (with 3.4 × 1500 ≈ 5000 labels) are chosen
randomly for training and the remaining are used for testing.
With the same number of annotations as described above,
compared with the 0.4355 (OF1) and 0.3820 (OF2) of ML-
GCN which is trained directly on the target data, SCIDA could
achieve comparable results as 0.3673(OF1) and 0.3493 (OF2).
It is worth emphasizing that the proposed SCIDA only uses
publicly available annotated single-label images. The results
suggest that for model training, prior knowledge from publicly
available single-label images can be an efficient alternative to
manual annotations of multi-label images.

VI. CONCLUSION

In this paper, we propose a novel framework for single-
label to multi-label aerial scene transfer. The proposed SCIDA
model integrates self-correction to domain adaptation. This
model can be applied to large scale, unlabeled and uncon-
strained aerial images. The model is trained in a two-stage
manner. Our reported multi-label classification results in the
target domain demonstrate the effectiveness of the proposed
model. A new multi-label aerial image (MAI) dataset is
collected and used for experiments. For future work, we will
extend the proposed SCIDA model to more challenging image
types and applications.
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