Yu, Tianze und Lin, Jinazhe und Hua, Yuansheng und Zhu, Xiao Xiang und Wang, Z. Jane (2022) SCIDA: Self-Correction Integrated Domain Adaptation From Single- to Multi-Label Aerial Images. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 5803313. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3170357. ISSN 0196-2892.
PDF
- Preprintversion (eingereichte Entwurfsversion)
5MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9762917
Kurzfassung
Most publicly available datasets for image classification are with single labels, while images are inherently multilabeled in our daily life. Such an annotation gap makes many pretrained single-label classification models fail in practical scenarios. For aerial images, this annotation issue is more concerned: Aerial data naturally cover a relatively large land area with multiple labels, while annotated aerial datasets currently publicly available (e.g., UCM and AID) are single-labeled. As manually annotating multilabel aerial images (MAIs) would be time-/ labor-consuming, we propose a novel self-correction integrated domain adaptation (SCIDA) method for automatic multilabel learning. SCIDA is weakly supervised, i.e., automatically learning the multilabel image classification model from using massive, publicly available single-label images. To achieve this goal, we propose a novel labelwise self-correction (LWC) module to better explore underlying label correlations. This module also makes the unsupervised domain adaptation (UDA) from single-label to multilabel data possible. For model training, the proposed method uses single-label information yet requires no prior knowledge of multilabeled data and predicts labels for MAIs. Through extensive evaluations, the proposed model, which is trained with single-labeled MAI-AID-s and MAI-UCM-s datasets, achieves much better performances than comparative methods on our collected multiscene aerial image dataset. The code and data are available on GitHub ( https://github.com/Ryan315/Single2multi-DA ).
elib-URL des Eintrags: | https://elib.dlr.de/192696/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | SCIDA: Self-Correction Integrated Domain Adaptation From Single- to Multi-Label Aerial Images | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | April 2022 | ||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 60 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2022.3170357 | ||||||||||||||||||||||||
Seitenbereich: | Seite 5803313 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Aerial image, graph convolutional network (GCN), MAI dataset, noise, OpenStreetMap (OSM), unsupervised domain adaptation (UDA) | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Hinterlegt am: | 20 Dez 2022 11:01 | ||||||||||||||||||||||||
Letzte Änderung: | 18 Jul 2023 13:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags