Guo, Jianhua and Xu, Qingsong and Zeng, Yue and Liu, Zhiheng and Zhu, Xiao Xiang (2022) Semi-Supervised Cloud Detection in Satellite Images by Considering the Domain Shift Problem. Remote Sensing, 14, p. 2641. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs14112641. ISSN 2072-4292.
PDF
- Published version
20MB |
Official URL: https://www.mdpi.com/2072-4292/14/11/2641
Abstract
In terms of semi-supervised cloud detection work, efforts are being made to learn a promising cloud detection model via a limited number of pixel-wise labeled images and a large number of unlabeled ones. However, remote sensing images obtained from the same satellite sensor often show a data distribution drift problem due to the different cloud shapes and land-cover types on the Earth’s surface. Therefore, there are domain distribution gaps between labeled and unlabeled satellite images. To solve this problem, we take the domain shift problem into account for the semi-supervised learning (SSL) network. Feature-level and output-level domain adaptations are applied to reduce the domain distribution gaps between labeled and unlabeled images, thus improving predicted results accuracy of the SSL network. Experimental results on Landsat-8 OLI and GF-1 WFV multispectral images demonstrate that the proposed semi-supervised cloud detection network (SSCDnet) is able to achieve promising cloud detection performance when using a limited number of labeled samples and outperforms several state-of-the-art SSL methods.
Item URL in elib: | https://elib.dlr.de/192693/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Semi-Supervised Cloud Detection in Satellite Images by Considering the Domain Shift Problem | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | May 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||||||
DOI: | 10.3390/rs14112641 | ||||||||||||||||||||||||
Page Range: | p. 2641 | ||||||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | remote sensing imagery; cloud detection; semi-supervised learning; distribution drift; domain shift problem; domain adaptation | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Deposited On: | 20 Dec 2022 11:00 | ||||||||||||||||||||||||
Last Modified: | 19 Oct 2023 13:22 |
Repository Staff Only: item control page