
Citation: Guo, J.; Xu, Q.; Zeng, Y.;

Liu, Z.; Zhu, X. Semi-Supervised

Cloud Detection in Satellite Images

by Considering the Domain Shift

Problem. Remote Sens. 2022, 14, 2641.

https://doi.org/10.3390/rs14112641

Academic Editors: Miltiadis D. Lytras

and Andreea Claudia Serban

Received: 25 April 2022

Accepted: 30 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Semi-Supervised Cloud Detection in Satellite Images by
Considering the Domain Shift Problem
Jianhua Guo 1 , Qingsong Xu 1 , Yue Zeng 1, Zhiheng Liu 2 and Xiaoxiang Zhu 1,3,*

1 Department of Aerospace and Geodesy, Data Science in Earth Observation, Technical University of Munich (TUM),
80333 Munich, Germany; jianhua.guo@tum.de (J.G.); qingsong.xu@tum.de (Q.X.); yue.zeng@tum.de (Y.Z.)

2 School of Aerospace Science and Technology, Xidian University, Xi’an 710126, China;
liuzhiheng@xidian.edu.cn

3 Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Weßling, Germany
* Correspondence: xiaoxiang.zhu@dlr.de

Abstract: In terms of semi-supervised cloud detection work, efforts are being made to learn a
promising cloud detection model via a limited number of pixel-wise labeled images and a large
number of unlabeled ones. However, remote sensing images obtained from the same satellite sensor
often show a data distribution drift problem due to the different cloud shapes and land-cover types
on the Earth’s surface. Therefore, there are domain distribution gaps between labeled and unlabeled
satellite images. To solve this problem, we take the domain shift problem into account for the semi-
supervised learning (SSL) network. Feature-level and output-level domain adaptations are applied
to reduce the domain distribution gaps between labeled and unlabeled images, thus improving
predicted results accuracy of the SSL network. Experimental results on Landsat-8 OLI and GF-1
WFV multispectral images demonstrate that the proposed semi-supervised cloud detection network
(SSCDnet) is able to achieve promising cloud detection performance when using a limited number of
labeled samples and outperforms several state-of-the-art SSL methods.

Keywords: remote sensing imagery; cloud detection; semi-supervised learning; distribution drift;
domain shift problem; domain adaptation

1. Introduction

With the development of the Earth observation technology, an increasing number
of optical satellites are launched for Earth observation missions. Remote sensing images
acquired from the optical satellites can serve environment protection [1], global climate
change [2], hydrology [3], agriculture [4], urban development [5], and military reconnais-
sance [6]. However, since 60% earth’s surface is covered by clouds, the acquired optical
remote sensing (RS) images are often contaminated by clouds [7]. In the field of meteoro-
logical, cloud information of RS images is useful in weather forecast [8], while, for earth
surface observation missions, cloud coverage degrades the quality of satellite imagery.
Therefore, it is important to improve RS images quality through cloud detection.

Over the past few decades, cloud detection from RS imagery has attracted much
attention. Many advanced cloud detection technologies have been proposed. In this
paper, we broadly categorize these methods into rule-based methods and machine learning-
based methods. The rule-based methods are mostly developed from spectral/spatial
domain [9–12]. These methods distinguish clouds from clear sky pixels by exploiting re-
flectance variations in visible, shortwave-infrared, and thermal bands. Rule-based methods
have obvious flaws, i.e., they strongly depend on particular sensor models and have poor
generalization performance. For example, Fmask algorithms [9–11] are developed for
Sentinel-2 and Landsat 4/5/7/8 satellite images, while the multifeature combined (MFC)
method [12] is developed for GF-1 wide field view (WFV) satellite images only. In addition,
machine learning-based cloud detection methods have also attracted much attention due
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to their powerful data adaptability. The most representative machine learning-based cloud
detection methods are maximum likelihood [13,14], support vector machine (SVM) [15,16],
and neural network [17,18]. However, these methods heavily rely on hand-crafted fea-
tures, such as color, texture, and morphological features, to distinguish clouds from clear
sky pixels.

Recent years, with the development of deep learning, deep convolutional neural
network (DCNN) methods have been rapidly developed and widely used for cloud de-
tection from RS images. For example, U-Net and SegNet variants cloud detection frame-
works [19–23], and multi-scale/level feature fusion cloud detection frameworks [24–28].
In addition, advanced convolutional neural network (CNN) models, such as CDnetV2 [7]
and ACDnet [29], are developed for cloud detection from RS imagery with cloud–snow
coexistence. To achieve real-time and onboard processing, lightweight neural networks,
such as [30–32], are proposed for pixelwise cloud detection from RS images. However,
most of the previous CNN-based cloud detection methods are based on supervised learn-
ing frameworks. Although these CNN-based cloud detection methods have achieved
impressive performance, they heavily rely on a large number of training data with strong
pixel-wise annotations. Some recent cloud detection works, such as unsupervised domain
adaptation (UDA) [33,34] and domain translation strategy [35], have begun to explore how
to avoid using pixel-wise annotations for cloud detection network training. However, these
pixel-wise annotations free methods are not real label-free ones because they rely on other
labeled datasets.

Obtaining data label is an expensive and time-consuming task, especially pixel-wise
annotation. As illustrated in cityscapes dataset annotation work [36], it usually takes 1.5 h
to label a pixel-wise annotation from a high-resolution urban scene image with pixel size of
1024× 2048. For a remote sensing image with pixel size of 8 k× 8 k , it may take more hours
to label a whole scene RS image according to such experience. Although it is easier to label
the cloud pixel-wise samples individually, it may still take three to four hours for a tough
case that contains a large number of tiny and thin clouds, which increases the heavy cost
of manual labeling undoubtedly. In contrast, unlabeled RS images can be far more easily
acquired than labeled ones [37]. Therefore, it desperately needs to exploit how to utilize a
large number of unlabeled data to enhance the performance of cloud detection model.

In this paper, we proposed to use a semi-supervised learning (SSL) method [38,39]
to train a cloud detection network. Because the SSL method is able to reduce the heavy
cost of manual dataset labeling. In a semi-supervised segmentation framework, such as
DAN [37] and s4GAN [40], the segmentation network (cloud detection network) is able
to simultaneously take advantage of a large amount of unlabeled samples and a limited
number of labeled examples for network’s parameter learning. The core of SSL method is a
self-training [41] strategy, which is able to leverage pseudo-label generated from a large
amount of unlabeled samples to supervise the segmentation network training [42]. This
also means that accurate pseudo-label labeling is the key of self-training. Therefore, most
advanced SSL methods, such as [40,43], focus on improving pseudo-labels of unlabeled
samples to improve the performance of the SSL network.

SSL networks developed for tradition natural image segmentation, such as [38–40,43],
may not achieve a promising performance for satellite images cloud detection due to RS
images are different from traditional camera natural images. In addition, the data drift
problem may appear between a limited number of labeled examples and a large number of
unlabeled samples due to different cloud shapes and land-cover types on different satellite
images. The SSL network trained with labeled samples is difficult to generalize to unlabeled
samples due to the data drift problem. During training, the SSL network may produce
prediction results with lower certainty when the network input with unlabeled data [40].
The prediction results of unlabeled samples has shown lower certainty and cannot generate
accurate pseudo-labels, which makes self-training unfavorable for providing supervision
signals of network training.
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To solve this problem, we take the domain shift problem into account for the SSL
framework. In this paper, inspired by unsupervised domain adaptation (UDA) method [44],
we apply domain adaptation at the feature-level [45] and output-level [46,47] in the pro-
posed semi-supervised cloud detection network (SSCDnet) to solve the data drift problem.
In this paper, we use two available cloud cover validation datasets, i.e., Landsat-8 OLI
(Operational Land Imager) [48] cloud cover validation dataset (https://landsat.usgs.gov/
landsat-8-cloud-cover-assessment-validation-data, accessed on 24 April 2022) and GF-1
WFV [12] cloud and cloud shadow cover validation dataset (http://sendimage.whu.edu.
cn/en/mfc-validation-data/, accessed on 24 April 2022), to comprehensively evaluate
the proposed SSCDnet. These two datasets have been widely used for evaluating the
performance of supervised CNN-based cloud detection methods [19–23,27].

In summary, the main contributions of this work are summarized as follows:

(i) We propose a semi-supervised cloud detection framework, named SSCDnet, which
learns knowledge from a limited number of pixel-wise labeled examples and a large
number of unlabeled samples for cloud detection.

(ii) We take the domain shift problem into account between labeled and unlabeled images
and propose the feature-level and output-level domain adaptation method to reduce
domain distribution gaps.

(iii) We propose a double threshold pseudo-labeling method to obtain trustworthy pseudo
label, which helps to avoid the effects of noise labels for self-training as much as
possible and to further enhance the performance of SSCDnet.

This paper is organized as follows: in Section 2, we present the proposed SSCDnet
in detail. Experimental datasets and networks training details are presented in Section 4.
The experimental results and discussions are presented in Sections 4 and 5, respectively,
followed by conclusions in Section 6.

2. The Proposed Method

In this section, we provide a detailed introduction of the proposed SSCDnet, including
the traditional semi-supervised segmentation framework, the proposed overall workflow of
SSCDnet, feature/out-level domain adaptation, trustworthy pseudo label labelling, cloud
detection network, and discriminator network structures.

2.1. Traditional Semi-Supervised Segmentation Framework

In a traditional semi-supervised segmentation framework [37–40], as shown in Figure 1,
the segmentation network G simultaneously takes advantage of a large number of unlabeled
samples and a limited number of labeled examples for a network’s parameter training. In this
framework, there are two datasets, i.e., labeled dataset Ml = {xl , yl} and unlabeled dataset
Mu = {xu}, where xl and xu are the input data of the segmentation network G and yl is
a pixel-wise label of xl. pl and pu represent predicted results of xl and xu, respectively. p̂u

represents a pseudo label of pu.

Segmentation 
Network G

 Pseudo-labelling

L st

xu p
u  Pseudo label

p
u ^

p
l 
 y

l 
Ground Truth

L ce

xl 

Labeled workflow Unlabeled workflow Training loss

Figure 1. The traditional semi-supervised segmentation framework.

https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data
https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data
http://sendimage.whu.edu.cn/en/mfc-validation-data/
http://sendimage.whu.edu.cn/en/mfc-validation-data/
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During training, given an input labeled image xl , the segmentation network G is
supervised by a standard cross-entropy loss Lce. When using the unlabeled data xu,
the segmentation network is further supervised by a self-training loss Lst. That is, we
use pseudo label p̂u that generated from predicted result pu as the “ground truth” for
self-training to enhance the semantic segmentation network G. Therefore, total training
objective LG of the segmentation network G is defined as follows:

LG = Lce + λstLst, (1)

where λst is weight used for minimizing the objective LG.
As shown in Figure 2, remote sensing images obtained from different places show

large domain distribution gaps between each other due to different cloud shapes and
land-cover types on Earth’s surface. Therefore, there is data drift between labeled samples
and unlabeled ones in training dataset of SSL. In SSL framework, segmentation network
G trained with labeled samples is hard to generalize to unlabeled ones due to data drift
problems. It is difficult to produce a highly certain prediction result pu for unlabeled sample
xu. Predicted results with low certainty leads to low quality pseudo-labels, thus affecting
the supervision signal provided from the self-training loss Lst, and further affecting the
performance of segmentation network G. Therefore, improving certainty of predicted
results of unlabeled samples is the key to a semi-supervised learning framework.

(a) (b) (c) (d)

Figure 2. Remote sensing images obtained from the same satellite sensor (GF-1 satellite) at different
places. Where (a) GF1_WFV2_E127.2_N45.9_20140704_L2A00003099760, (b) GF1_WFV1_E102.0_
N28.0_20140302_L2A00002804760, (c) GF1_WFV1_E99.4_N36.3_20140716_L2A00002789230, and
(d) GF1_WFV3_E89.3_N35.6_20140702_L2A00008451540.

2.2. Proposed Semi-Supervised Cloud Detection Framework

In this paper, we take the domain shift problem into account for the semi-supervised
learning (SSL) framework to improve generalization of the segmentation network to gen-
erate trustworthy pseudo-label for self training. We improve a standard SSL network
with the unsupervised domain adaptation (UDA) strategy and propose an improved semi-
supervised cloud detection network as shown in Figure 3. UDA methods are able to help
semantic segmentation networks to learn domain-invariant features at different representa-
tion layers, such as input-level (pixel-level) [49], feature-level [45], or output-level [46,47].

Different from the traditional SSL framework, we apply feature-level and output-level
domain adaptations at the intermediate layers and the end layer of network, respectively, to
reduce domain distribution gaps and improve the generalization performance of SSCDnet.
The highly generalized network is able to generate highly certain predicted results for
unlabeled samples. To further improve the quality of pseudo-label, instead of directly
using the predicted results of unlabeled samples for network training, we proposed a
trustworthy pseudo label labelling method to obtain a high-quality pseudo label. To be
specific, similar to [40,43], we take advantage of the feedback information from output-
level domain adaptation to obtain high-quality candidate labels. Then, we use a threshold
strategy to obtain trustworthy regions from the high-quality candidate labels. Finally,
trustworthy regions are considered as the ground-truth labels for network training through
the self-training loss.
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Figure 3. The detailed structure of the proposed SSCDnet.

During training, given an input labeled image xl and its corresponding predicted result
is pl , the cloud detection network is supervised by a standard cross-entropy loss Lce [27].
When inputting unlabeled data xu, segmentation network G predicts its corresponding
result pu. Then, we generate the pseudo label p̂u from predicted result pu by using proposed
trustworthy pseudo label labelling method. Pseudo label p̂u as the “ground truth” for
self-training to enhance the semantic segmentation network G. Therefore, the semantic
segmentation network is further supervised by self-training loss Lst and feature-level
domain adaptation loss L f da as well as output-level domain adaptation loss Loda when
inputting unlabeled data. The total loss of the semi-supervised cloud detection network,
named SSCDnet, is defined as follows:

LG = Lce + λstLst + λodaLoda + λ f daL f da, (2)

where λst, λoda, and λ f da are three regulation parameters used for minimizing the objec-
tive LG.

During training, we minimize LG for updating parameters of segmentation network
G. The detailed information of the proposed feature/output-level domain adaptation
strategies and trustworthy pseudo label labelling method will be introduced in following
subsections.

2.3. Reducing Domain Distribution Gaps
2.3.1. Feature-Level Domain Adaptation

To reduce domain distribution gaps at the feature-level, we propose a class-relevant
feature alignment (CRFA) strategy. As shown in Figure 4, we use predicted score maps of
each class (i.e., cloud and background classes) as the attention maps to obtain class-relevant
features. Then, we design a standard binary classification network as the discriminator to
help segmentation network G to generate domain-invariant feature representations, thus
helping to reduce domain distribution gaps between labeled samples and unlabeled ones
at feature level. Therefore, the proposed CRFA domain adaptation consists of two stages:
(i) class-relevant feature selection and (ii) class-relevant feature alignment.

To be specific, let Hk
l ∈ RW×H×C and Hk

u ∈ RW×H×C denote labeled and unlabeled
samples’ features extracted from the k-th intermediate hidden layer of network G, respec-
tively. Let p̃i

l(:, :, 1) and p̃i
l(:, :, 2) denote the spatial attention maps of cloud and background

areas of labeled samples, respectively. Then, cloud-relevant feature Ck
l ∈ RW×H×C and
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background-relevant feature Bk
l ∈ RW×H×C of the labeled samples’ feature Hk

l ∈ RW×H×C

are defined as follows:
Ck

l = Hk
l ⊗F

(
p̃i

l(:, :, 1)
)

, (3)

and
Bk

l = Hk
l ⊗F

(
p̃i

l(:, :, 2)
)

, (4)

where F (·) represents sampling operator, which includes down-sampling or up-sampling
operators. Similarly, we are able to obtain cloud-relevant feature Ck

u ∈ RW×H×C and
background-relevant feature Bk

u ∈ RW×H×C of unlabeled samples’ feature Hk
u ∈ RW×H×C.

Bl
k
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Labeled image s
feature

Feature alignment  based 
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strategy

Hu
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Hl
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L
adv

D
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Figure 4. Structure of the proposed class-relevant feature alignment module.

After obtaining these class-relevant features, we input these features into discrimina-
tors as shown in Figure 4. For discriminator training, both discriminators D(k,1)

crfa and D(k,2)
crfa

use cross-entropy domain classification loss [44] as the objective function. They are defined
as follows:

L
D(k,1)

crfa
= −E[log(D(k,1)

crfa (Ck
l ))]−E[log(1− D(k,1)

crfa (Ck
u))] (5)

and

L
D(k,2)

crfa
= −E[log(D(k,2)

crfa (Bk
l ))]−E[log(1− D(k,2)

crfa (Bk
u))]. (6)

For segmentation network training, the adversarial objectives provided by discrimina-
tors (D(k,1)

crfa and D(k,2)
crfa ) are defined as follows:

Ladv
D(k,1)

crfa

= −E[log D(k,1)
crfa (Ck

u)] (7)

and
Ladv

D(k,2)
crfa

= −E[log D(k,2)
crfa (Bk

u)]. (8)

Therefore, the class-relevant feature alignment loss Lk
cr f a of the k-th intermediate

hidden feature is defined as follows:

Lk
cr f a = L

adv
D(k,1)

crfa

+ Ladv
D(k,2)

crfa

. (9)
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Since the proposed feature-level domain adaptation is performed at multiple interme-
diate layers, the feature-level domain adaptation loss L f da is provided from all intermediate
layers’ CRFA losses {Lk

cr f a}
K
k=1, i.e.,

L f da =
K

∑
k=1
Lk

cr f a. (10)

where Lk
f da is the feature domain adaptation loss of the k-th intermediate hidden feature.

2.3.2. Output-Level Domain Adaptation

Instead of directly aligning the predicted results, we align cloud and background
objects images extracted from labeled and unlabeled samples, respectively, via a proposed
class-relevant outputs alignment (CROA) method. Similar to the CRFA method, the CROA
method is built on the standard adversarial learning framework. CROA consists of two
discriminators, which are used to align cloud and background images, respectively. As
shown in Figure 5, we use two standard binary classification networks as discriminators to
reduce the domain distributions gaps between labeled and unlabeled datasets at the output
level and improve the certainty of predicted results zu for unlabeled sample xu.
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o
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adv
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Figure 5. Structure of the proposed CROA.

As shown in Figure 5, we use the cloud and background objects extracted from original
images as the input data of different discriminators. To be specific, let zu

c = pu(:, :, 1)⊗ xu

and zu
b = pu(:, :, 2) ⊗ xu denote extracted cloud and background objects of unlabeled

sample. Similarly, let zl
c = pl(:, :, 1)⊗ xl and zl

b = pl(:, :, 2)⊗ xl denote extracted cloud and
background objects of the labeled sample, where ⊗ represents element-wise multiplication.
For discriminator training, both discriminators D1

croa and D2
croa use cross-entropy domain

classification loss [44] as the objective function. They are defined as follows:

LD1
croa

= −E[log(D1
croa(z

l
c)]−E[log(1− D1

croa(z
u
c ))], (11)

and

LD2
croa

= −E[log(D1
croa(z

l
b)]−E[log(1− D1

croa(z
u
b ))]. (12)

For segmentation network training, adversarial objectives provided by these discrimi-
nators are defined as follows:

Ladv
D1

croa
= −E[log D1

croa(xu
c )], (13)

and
Ladv

D2
croa

= −E[log D2
croa(xu

b )]. (14)



Remote Sens. 2022, 14, 2641 8 of 23

Therefore, the output-level domain adaptation objective Loda is defined as follows:

Loda = Ladv
D1

croa
+ Ladv

D2
croa

. (15)

As shown in Figure 6, we present the visualized experiment results on a GF-1 WFV
image with or without applied domain adaptation. Results show that applying domain
adaptation is able to improve the segmentation network to produce high certainly predicted
results for unlabeled samples as shown in Figure 6c. High certainly predicted results ensure
that we can obtain trustworthy pseudo label for self-training, thus improving the network’s
cloud detection performance. More detailed information can be found in Section 4.1
(Ablation Study).

1.0

0.8

0.6

0.4

0.2

0

(a) (b) (c)

Figure 6. Experiment results on an unlabeled remote sensing image. (a) input GF-1 WFV image;
(b) un-applied domain adaptation result, and (c) applied domain adaptation result.

2.4. Trustworthy Pseudo Label Labelling

Pseudo label labelling is the main work for self-training in an SSL framework [38–40,43,50].
During self-training, pseudo labels predicted from the segmentation model serve as the
“ground truth” to provide additional supervisory signals for network training, which makes
the segmentation network able to leverage the unlabeled data. In this paper, we propose a
double threshold pseudo-labelling method to efficiently obtain trustworthy regions from
pseudo label. We use trustworthy regions as the ground truth for network training.

2.4.1. Candidate Labels Selection

As shown in Figure 7, we sample an unlabeled image xu into the segmentation network
G, obtaining its corresponding predicted probability maps pu = G(xu) as well as extracted
cloud and background objects zu

c and zu
b , respectively. We first use feedback information

from the output-level domain adaptation to obtain candidate labels. Specifically, we select
high-quality pseudo labels online based on two discriminator scores of output-level domain
adaptation, i.e.,

Dcroa(zu
c ) > τ1, Dcroa(zu

b ) > τ1, (16)

where τ1 is the threshold. Equation (16) is feedback information from the output-level
domain adaptation. We treat these predicted labels satisfied Equation (16) as candidate
labels. If not satisfied, we directly set self-training loss Lst = 0.

p
u ^p

u 
 

 

Dcroa

p
u

(w,h,c)>τ2p
u 
 

L st=0

Pseudo-labeling

 

z
u c

z
u b

Dcroa
xu 

G

Yes

No

L st

1Dcroa(z
u
) > τ1c

bDcroa(z
u
) > τ1

2

1

2

Feedback information

Figure 7. The double threshold pseudo-labelling method for self-training.

2.4.2. Trustworthy Regions Selection from Candidate Labels

After we obtained the candidate labels, we set a confidence threshold τ2 to discover
trustworthy regions from the selected candidate labels, i.e.,

D1
croa(z

u
c ) > τ1, D2

croa(z
u
b ) > τ1, and pu

(w,h,c) > τ2. (17)



Remote Sens. 2022, 14, 2641 9 of 23

Equation (17) indicates that, if predicted probability of these regions is greater than τ2,
we use these trustworthy regions as the ground-truth for self-training.

2.4.3. Self-Training Loss Lst

According to the above mentioned method, the self-training loss Lst is defined as:

Lst =


−∑ p̂u

(w,h,c) log pu
(w,h,c), D1

croa(zu
c ) > τ1, D2

croa(zu
b ) > τ1,

and pu
(w,h,c) > τ2

0 otherwise.

(18)

where p̂u is the pseudo label generated from the prediction map pu by using a one-hot
encoding scheme. pu

(w,h,c) represents the predicted probability at the location (h,w) of the
C-channel.

2.5. Network Architecture
2.5.1. Cloud Detection Network

Similar to most SSL approaches [40,43], we use DeepLabv2 [51] as our main cloud
detection framework and resort to ResNet-101 [52] as the backbone to extract seman-
tic segmentation information. DeepLabv2 uses atrous spatial pyramid pooling (ASPP)
module [51], which incorporates multiple parallel dilated convolutional layers [53] with
different sampling rates, to capture multi-scale features for robustness clouds detection. In
this paper, we set the resolution of predicted probability map as 1/8 × 1/8 size of input
image for fair comparison with previous semi-supervised works based on DeepLabv2, such
as [37,40]. Then, we directly up-sample the predicted probability maps to the same size as
the input images to obtain final predicted results.

2.5.2. Discriminator Network

In this paper, we design a standard binary classification network as the discrimina-
tor for both CRFA and CROA modules. Figure 8 illustrates the detailed structure of the
designed discriminator. This discriminator contains four convolutional layers, a global
average pooling layer, and a fully-connected layer. To be specific, there are four convo-
lutional layers with 4 × 4 kernels. Four convolutional layers have {256, 192, 128, 64} and
{64, 128, 256, 512} channels for CRFA and CROA modules, respectively. Each convolutional
layer shares the same stride (stride = 2) and simultaneously followed by a Leaky-ReLU
activation (slope = 0.2) and a dropout layer (dropout-rate = 0.5). After these convolution
operations, a global average pooling layer and a fully-connected layer are designed to
obtain confidence score for each input image.

0/1

Conv1 Conv2 Conv3 Conv4

Figure 8. Structure of the proposed discriminator network.

3. Dataset and Experimental Settings
3.1. Experimental Dataset

In this paper, we use two available cloud cover validation datasets, i.e., Landsat-8
OLI cloud cover validation dataset [48] and GF-1 WFV cloud and cloud shadow cover
validation dataset [12], to comprehensively evaluate the proposed SSCDnet. Table 1 shows
the detailed information of Landsat-8 OLI and GF1-WFV multispectral images. Similar
to [27], we follow the idea that the number of subimages with and without cloud in the
training data should be balanced. Otherwise, the detection results would bias towards the
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majority. Therefore, we exclude some cloud-free and full cloud covered scenes. In addition,
current cloud detection accuracy measurement is not robust when the cloud percentage is
quite low [10]. A low cloud cover percentage in a scene may cause an apparent reduction
in the cloud’s producer accuracy and user accuracy. Therefore, original large size images
with cloud percentage less than 5% are usually removed in training and testing. Finally, we
select 40 and 20 scenes images from both Landsat-8 and Gaofen-1 WFV dataset for network
training and evaluation, respectively.

Table 1. The detailed information of Landsat-8 OLI and GF1-WFV multispectral images.

Sensor Spectral Band Wavelength
Range (µm)

Spatial
Resolution (m)

Landsat-8 OLI

Band 1 (coastal) 0.433–0.453 30
Band 2 (blue) 0.450–0.515 30

Band 3 (green) 0.525–0.600 30
Band 4 (red) 0.630–0.680 30
Band 5 (NIR) 0.845–0.885 30

Band 6 (SWIR1) 1.560–1.660 30
Band 7 (SWIR2) 2.100–2.300 30

Band 8 (Pan) 0.500–0.680 15
Band 9 (Cirrus) 1.360–1.390 30

GF-1 WFV

Band 1 (blue) 0.450–0.520 16
Band 2 (green) 0.520–0.590 16

Band 3 (red) 0.630–0.690 16
Band 4 (NIR) 0.770–0.890 16

As illustrated in [54], CNNs are strongly biased towards recognizing textures for object
classification. Therefore, we can select a limited number of channels data of multispectral
data to evaluate the proposed SSCDnet. In this paper, we select channels 3 (green), 4
(red), and 5 (near-infrared) of Landsat-8 OLI data and channels 2 (green), 3 (red), and
4 (near-infrared) of Gaofen-1 WFV data for segmentation network training and testing.
During training, all training data are cropped into subimages of pixel size 321 × 321. There
are about 30 k and 75 k annotated sub-images in Landsat-8 OLI and GF-1 WFV training
dataset, respectively. We select a portion of the data set for network supervised training
and the remaining de-annotated portion for network self-training (unsupervised training).
During testing, we divide the whole RS image into a series of sub-images with image size
of 1200 × 1200 for network evaluation. The final detection result is obtained by merging
results of sub-images.

3.2. Network Training Details and Parameters Setting

SSCDnet is trained under PyTorch framework (https://pytorch.org/, accessed on
24 April 2022). The operating system is Ubuntu 14.04 equipped with NVIDIA GTX 1080
Ti GPU. We optimize the segmentation (generator) and discriminator networks by using
SGD algorithm [55] and Adam optimizer [56], respectively. During training, these two
datasets share the following parameters settings. That is, learning rates for generator and
discriminator network are 2.5 × 10−4 and 1 × 10−4, respectively. Training decay policy is
“poly” [57]. The number of mini-batch size, momentum, and weight decay are 4, 0.9, and
5 × 10−4, respectively. SSCDnet is trained for 20 and 15 epochs on Landsat-8 OLI and GF-1
WFV dataset, respectively.

In addition, in order to improve the performance, we use the model pre-trained on the
ImageNet dataset [58] to fine-tune the parameters of the backbone network (ResNet-101).
We conduct feature-level domain adaptation tasks at the end of Conv4_x and Conv5_x
residual blocks, i.e., K = 2. We empirically set weight-parameters λst = 1.0, λ f da = 0.001,
and λoda = 0.1 for GF-1 dataset, set λst = 1.0, λ f da = 0.001, and λoda = 0.01 for Landsat-8

https://pytorch.org/
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OLI dataset. In addition, we empirically set threshold-parameters τ1 = 0.6 and τ2 = 0.55 to
accurately generate trustworthy pseudo labels for both GF-1 and Landsat-8 OLI datasets.

4. Experimental Results
4.1. Ablation Study

To investigate the effectiveness of SSCDnet, we conduct a series of ablation studies on
it. Five widely used quantitative metrics of RS images, i.e., mean intersection over union
(MIoU), kappa coefficient (Kappa), overall accuracy (OA), producer accuracy (PA), and
user accuracy (UA), are used to comprehensively measure the cloud detection results. All
experiment results are obtained from the GF-1 WFV dataset.

4.1.1. Ablation Study on Loss Function

In this paper, the proposed SSCDnet is supervised by four loss functions, i.e., a
standard cross-entropy loss Lce, self-training loss Lst, output-level domain adaptation loss
Loda, and feature-level domain adaptation loss L f da. In Table 2, we list ablation results
under different proportion of labeled samples ( 1

200 , 1
100 , 1

40 , 1
20 , and full labeled samples) to

demonstrate the effects of each component loss.

Table 2. Cloud extraction accuracy (%) of different ablation networks on GF-1 WFV data.

Proportions

Lce
√ √ √ √

Lst ×
√ √ √

Loda × ×
√ √

L f da × × ×
√

1
200

OA 90.22 93.56 95.30 95.51
MIoU 71.77 83.22 86.95 87.54
Kappa 68.21 78.15 82.07 82.69

PA 67.03 73.67 80.02 81.28
UA 95.51 96.40 94.57 93.55

1
100

OA 91.34 93.89 95.73 95.85
MIoU 74.10 84.11 88.05 88.90
Kappa 71.51 78.90 83.34 83.92

PA 69.71 74.32 81.52 82.34
UA 94.93 95.99 94.28 93.36

1
40

OA 92.23 94.52 96.02 96.24
MIoU 76.02 86.03 89.01 89.30
Kappa 73.58 80.85 84.77 85.01

PA 75.08 80.18 84.40 85.49
UA 93.43 93.30 91.59 92.24

1
20

OA 93.19 95.11 96.55 96.90
MIoU 79.88 87.16 90.46 90.93
Kappa 75.75 83.77 86.25 86.97

PA 80.69 82.22 84.87 85.89
UA 92.30 92.10 92.72 92.24

Full

OA 96.91 97.11 97.17 97.19
MIoU 90.15 91.50 91.67 91.71
Kappa 88.64 89.49 89.35 89.37

PA 87.28 88.67 88.84 88.90
UA 92.05 92.33 92.51 92.32

where 1
200 , 1

100 , 1
40 , and 1

20 are the fractions of the total training images in the dataset that are used as labeled data,
and the rest of the data was used without labels. Bold indicates maximum value in this paper.

Results in Table 2 show that the best performance is achieved by a combination of
all optimal loss terms (we use {Lce,Lst,Loda,L f da} to represent this combination.), while
the baseline framework supervised only by the standard cross-entropy loss Lce shows
the worst performance. To be specific, a combination of Lce and Lst (i.e., {Lce,Lst}) and
combination of Lce, Lst, and Loda (i.e., {Lce,Lst,Loda}) obtain significant improvement of
+9.44% and +13.86% in Kappa, respectively, compared with only Lce loss when labeled
sample proportion is 1

200 . In addition, {Lce,Lst} and {Lce,Lst,Loda} also outperform Lce
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under other proportions of labeled sample settings, which shows that output-level domain
adaptation and self-training strategies are able to improve the performance of segmentation
network.

Based on {Lce,Lst,Loda}, we further introduce feature domain adaptation loss L f da
to reduce feature-level domain distribution gaps between labeled and unlabeled datasets.
Results in Table 2 show that {Lce,Lst,Loda,L f da} performs better than {Lce,Lst,Loda}. In
addition, it can be seen that the performance of {Lce,Lst,Loda,L f da} consistently out-
performs those of other combinations under different proportions of labeled sample
({ 1

200 , 1
100 , 1

40 , 1
20}), which shows that the proposed {Lce,Lst,Loda,L f da} is a promising

strategy for semi-supervised segmentation network.
In summary, results in Table 2 demonstrate that standard cross-entropy loss Lce,

self-training loss Lst, output-level domain adaptation loss Loda, and feature-level domain
adaptation loss L f da are beneficial for semi-supervised cloud detection work. Because
applying domain adaptation strategy is able to reduce distribution gaps between labeled
and unlabeled datasets and improve SSCDnet to generate trustworthy pseudo-labels for
self-training, thus providing positive supervised signals for segmentation network learning.
Combination of all these loss terms is able to achieve a state-of-the-art cloud detection
performance when using a limited number of labeled samples.

4.1.2. Ablation Study on Feature-Level Domain Adaptation

In this paper, we use ResNet-101 [52] as the backbone network to extract feature maps
and conduct domain adaptation study on the end features of Conv4_x, Conv5_x, Conv3_x,
and Conv2_x residual blocks. In Table 3, we list the experiment results of ablation study
on different intermediate layers. Experiment results show that applying feature domain
adaptation on the end of Conv4_x and Conv5_x residual blocks, i.e., FDA_45, achieves
the best performance. In contrast, applying feature domain adaptation on other layers’
features always shows worse performance than on Conv4_x and Conv5_x layers. Hence,
we conduct the domain adaptation tasks at the end of Conv4_x and Conv5_x residual
blocks (two intermediate layers K = 2 in feature-level domain adaptation). Furthermore,
we find that applying domain adaptation tasks at above mentioned intermediate layers is
able to achieve promising performance on the Landsat-8 OLI dataset.

Table 3. Ablation study of domain adaptation on different intermediate layers (proportion = 1
200 ).

Methods OA MIoU Kappa PA UA
FDA_5 95.40 87.11 82.53 80.28 94.68

FDA_45 95.51 87.54 82.69 81.28 93.55
FDA_345 95.13 86.17 81.64 79.19 94.89

FDA_2345 95.41 87.06 82.93 81.73 93.54

4.1.3. Ablation Study on Self-Training’s Double Threshold

In this paper, we proposed a double threshold method to obtain trustworthy pseudo
labels for network self-training. In Table 4, we investigate effectiveness of the proposed
pseudo-labeling method.

Table 4. Ablation study on double threshold (proportion = 1
200 ).

Methods OA MIoU Kappa PA UA
Lst(N/A,N/A) 94.12 85.02 81.43 79.38 94.74
Lst(τ1 ,N/A) 95.02 86.33 81.95 80.11 93.30
Lst(τ1 ,τ2)

95.30 86.95 82.07 80.02 94.57

In Table 4, we list the experiment results under different pseudo-labeling strategies,
i.e., pseudo-labeling directly transforms from probability maps Lst(N/A,N/A), pseudo-
labeling based on a discriminator score of output-level domain adaptation Lst(τ1,N/A), and
pseudo-labeling based on both discriminator score of output-level domain adaptation and
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trustworthy regions selection Lst(τ1,τ2)
, where τ1 and τ2 are used to obtain candidate labels

and trustworthy regions, respectively. Results in Table 4 show that performance of the
loss term Lst(τ1,τ2)

is better than those of Lst(τ1,N/A) and Lst(N/A,N/A), which demonstrates
that trustworthy regions selection based on high confidence candidate label is a promising
strategy for pseudo label selecting.

4.1.4. Hyper-Parameter Analysis

The proposed training objective LG has three balance weights, i.e., λst, λoda, and λ f da.
In this paper, since we use all the trustworthy regions’ pseudo labels for self-training, we
directly set λst = 1.0. Then, λoda and λ f da are two important hyper-parameters that affect
cloud detection results. In Table 5, we list a series of validation experimental results to
investigate the impact of these hyper-parameters. As illustrated in Table 5, we first obtain
the promising λoda by setting λ f da = N/A (N/A means Not Applicable). Then, we obtain
the promising λ f da based on obtained promising λoda. Experimental results in Table 5
show that setting λoda = 0.10 and λ f da = 0.001 is able to achieve promising performance.
Similarly, we can obtain the promising hyper-parameter setting based on above mentioned
methods on Landsat-8 OLI data cloud detection task.

Table 5. The study on hyper-parameter λst, λoda, and λ f da (proportion = 1
200 ).

λst λoda λ f da OA MIoU Kappa PA UA
1.0 0.05 N/A 93.05 83.66 80.80 77.90 94.51
1.0 0.10 N/A 93.48 84.74 81.51 79.02 93.61
1.0 0.15 N/A 93.12 84.10 81.18 78.60 94.19
1.0 0.10 0.10 92.26 81.12 72.61 68.53 94.79
1.0 0.10 0.01 94.96 85.86 81.43 80.06 93.48
1.0 0.10 0.001 95.51 87.54 82.69 81.28 93.55
1.0 0.10 0.005 95.40 87.11 82.68 80.35 94.86

4.2. Comparisons with State-of-the-Art Methods
4.2.1. Comparison Methods

For comprehensive evaluation, we compare deep adversarial network DAN [37],
which focuses on training with both un-labeled and labeled images simultaneously to
improve segmentation performance. Moreover, we compare two semi-supervised CNN-
based semantic segmentation methods, i.e., Hung et al. [43] and s4GAN [40]. These two
SSL methods are based on an adversarial network and achieve promising performance
on PASCAL VOC 2012 [59] and Cityscapes datasets [36]. For fair comparison with the
proposed SSCDnet, we use DeepLabv2 [51] and ResNet-101 [52] as a segmentation network
and backbone of above-mentioned competing methods, respectively. In addition, baseline
network DeepLabv2 [51] is also used as the competing method. During training, we retrain
these CNN-based methods under their optimal parameter settings on Landast-8 OLI and
GF-1 WFV datasets.

4.2.2. Results on GF-1 WFV Data

Table 6 shows the quantitative results in terms of average OA, MIoU, Kappa, PA,
and UA on the GF-1 WFV testing dataset. We show these comparison results on four
different proportions of labeled samples ( 1

200 , 1
100 , 1

40 , and 1
20 ). Meanwhile, we also give

comparison results on fully labeled samples. Experiment results show that our proposed
SSCDnet consistently outperforms these competing methods at different proportions of
labeled samples. Notably, SSCDnet achieves 83.08% Kappa and 86.96% MIoU using only
0.5% (1/200) training data with pixel-wise annotation. Results of SSCDnet significantly
outperform those of competing methods. SSCDnet also achieves the best performance on
fully labeled data and shows a larger gain in terms of OA, MIoU, Kappa, PA, and UA than
competing methods.
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Table 6. Cloud extraction accuracy (%) of different comparison networks on GF-1 WFV data. All
results are the averaging results on all testing images.

Proportion Methods OA MIoU Kappa PA UA

1
200

DeepLabV2 [51] 90.22 71.77 68.21 67.03 95.51
DAN [37] 92.59 79.93 74.65 72.08 94.59

Hung et al. [43] 93.01 81.20 75.11 76.59 94.02
s4GAN [40] 93.44 81.79 75.62 77.31 93.38

SSCDnet 95.51 87.54 82.69 81.28 93.55

1
100

DeepLabV2 [51] 91.34 74.10 71.51 69.71 94.93
DAN [37] 93.13 82.41 77.56 75.84 93.66

Hung et al. [43] 94.20 83.88 78.56 76.11 93.02
s4GAN [40] 94.60 84.91 79.14 76.47 92.63

SSCDnet 95.85 88.90 83.92 82.34 93.36

1
40

DeepLabV2 [51] 92.23 76.02 73.58 75.08 93.43
DAN [37] 93.89 83.63 80.15 81.29 92.53

Hung et al. [43] 94.41 85.05 81.59 81.80 92.76
s4GAN [40] 95.30 86.80 82.47 82.20 93.00

SSCDnet 96.24 89.30 85.01 85.49 92.24

1
20

DeepLabV2 [51] 93.19 79.88 75.75 80.69 92.30
DAN [37] 94.32 85.05 81.52 82.21 92.93

Hung et al. [43] 94.94 86.12 82.53 82.44 93.09
s4GAN [40] 95.61 87.18 83.63 82.96 93.37

SSCDnet 96.90 90.93 86.97 85.89 92.24

Full

DeepLabV2 [51] 96.11 90.15 87.64 87.28 92.15
DAN [37] 97.09 90.37 88.72 88.19 92.43

Hung et al. [43] 97.12 90.57 88.79 88.50 92.71
s4GAN [40] 97.16 90.88 88.83 88.57 92.60

SSCDnet 97.19 91.71 89.37 88.90 92.32

where 1
200 , 1

100 , 1
40 , and 1

20 are the fractions of the total training images in the dataset that are used as labeled data,
and the rest of the data are used without labels.

It can be seen that the baseline network, DeepLabV2 [51], trained with only labeled
data, shows the worst results. DAN [37] shows better results than DeepLabV2 [51] due
to it being able to effectively utilize unlabeled data for training. These semi-supervised
methods, Hung et al. [43] and s4GAN [40] show better results than DeepLabV2 [51] and
DAN [37] due to being able to learn knowledge from a limited number of labeled examples
and a large number of additional unlabeled samples. Although these two methods show
competitive cloud detection performance, there is still a gap in performance between them
and the proposed SSCDnet. In addition, it also can be seen that all of the methods show
promising cloud detection performance on GF-1 WFV data when using fully labeled data
for network training. Even the worst baseline method DeepLabV2 [51] achieves 90.15%
mIoU and 88.64% Kappa.

In Figure 9, we show qualitative results when labeled samples proportion is 1
200 . These

images contain typical land-cover types, i.e., Figure 9a includes mountains, wetlands,
farmland, and grass/crops, Figure 9b includes village, forest and ice/snow, Figure 9c
includes water. Experiment results show that detection results of SSCDnet show more
consistency with the ground-truth than those of other competing methods. Results of
competing methods show a lot of misclassification pixels in thin cloud areas, while SSCDnet
shows less misclassification pixels, which indicates that SSCDnet is able to achieve more
promising performance on these imageries when using a limited number of labeled images.
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DeepLabV2 DAN s4GAN SSCDnetGF-1 WFV data
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Legend Cloud Non-cloud Misclassification

Hung et al.

Figure 9. Comparison of cloud detection results of different methods on GF-1 WFV
dataset with labeled sample proportion of 1/200. Image ID of (a), (b), and (c) are
GF1_WFV2_W102.1_N37.6_20140517_L2A0000244678, GF1_WFV3_E114.1_N2.1_20151011_L2A000
1094727, and GF1_WFV3_E87.8_N2.1_20140316_L2A0000184430, respectively.

4.2.3. Results on Landsat-8 OLI Data

In addition to the experiment results on the GF-1 data, we also conduct experiments
on Landsat8 OLI data. In Table 7, we list quantitative results on the Landsat8 OLI testing
dataset. Compared to other methods, the proposed SSCDnet also performs best on Landsat8
OLI data. For the low labeled sample’s proportion, such as 1

200 , SSCDnet is still able
to achieve satisfactory results (90.77% MIoU and 88.72% Kappa). These results show
consistency with the ground-truth. In contrast, performance of these competing methods is
less than that of SSCDnet. When increasing the proportion of labeled samples, competing
methods can improve their performance, but they are still inferior to SSCDnet. From Table 7,
we find that the performance of SSCDnet at a labeled sample proportion of 1

20 approaches
that of its full supervision and outperforms fully supervised DeepLabV2 [51] and DAN [37].
For fully labeled data, with the help of adversarial training and self-training strategies,
SSCDnet still shows the best performance compared with other competing methods.

In Figure 10, we show qualitative results on three whole scene landsat-8 OLI images.
These images contain typical land-cover types, i.e., Figure 10a includes mountains, forest,
ice/snow, water, and wetlands areas. Figure 10b includes water, floating ice, urban, moun-
tains, and forest areas. Figure 10c includes barren and desert areas. Experiment results are
obtained when labeled sample proportion is 1

200 . Experiment results show that SSCDnet
trained with a limited number of labeled samples can yield very competitive performance
on Landsat-8 OLI data. It can be seen that results of these competing methods show a
large number of misclassified pixels (red areas), especially in Figure 10c. There are a large
number of misclassified pixels displayed in the thin cloud area. In contrast, SSCDnet works
well on these images. Results of SSCDnet shows better consistency with the ground-truth
and fewer misclassified pixels than competing methods. Overall, experiment results in
Table 7 and Figure 10 show that the proposed SSCDnet is able to achieve promising cloud
detection performance on Landsat-8 OLI data.
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Table 7. Cloud extraction accuracy (%) of different comparison networks on Landsat-8 OLI data. All
results are the averaged results on all the testing images.

Proportions Method OA MIoU Kappa PA UA

1
200

DeepLabV2 [51] 91.24 84.16 81.77 82.12 94.53
DAN [37] 92.68 86.97 82.83 90.47 88.78

Hung et al. [43] 93.14 87.02 84.49 91.55 90.13
s4GAN [40] 93.88 88.76 85.91 93.38 91.05

SSCDnet 95.48 91.28 88.87 95.60 90.62

1
100

DeepLabV2 [51] 92.54 88.76 85.06 88.30 89.41
DAN [37] 93.99 89.32 85.75 91.11 89.45

Hung et al. [43] 94.58 90.71 87.89 93.80 90.33
s4GAN [40] 95.40 91.30 89.02 94.17 91.08

SSCDnet 95.63 91.75 89.38 93.81 92.01

1
40

DeepLabV2 [51] 93.15 89.06 85.67 90.16 89.90
DAN [37] 94.37 89.26 86.78 92.38 89.77

Hung et al. [43] 94.79 90.93 88.11 93.22 91.05
s4GAN [40] 95.54 91.33 89.19 93.15 92.00

SSCDnet 95.82 92.03 89.61 93.18 92.31

1
20

DeepLabV2 [51] 94.12 89.33 86.45 91.85 90.36
DAN [37] 95.29 89.61 86.99 92.67 90.14

Hung et al. [43] 95.83 91.06 88.20 92.11 91.82
s4GAN [40] 96.16 91.96 89.69 92.04 92.84

SSCDnet 96.67 92.19 90.13 92.50 93.26

Full

DeepLabV2 [51] 96.56 91.03 89.25 91.10 91.26
DAN [37] 96.60 92.09 89.53 91.62 93.11

Hung et al. [43] 96.57 92.11 89.77 92.28 92.03
s4GAN [40] 96.63 92.06 89.82 92.16 92.41

SSCDnet 97.19 92.65 90.34 92.75 93.36

DeepLabV2 DAN s4GAN SSCDnetLandsat-8 OLI data

(a)

(b)

(c)

Legend Cloud Non-cloud Misclassification

Hung et al.

Figure 10. Comparison of cloud extraction results of different methods on Landsat-8 OLI dataset with
a labeled sample proportion of 1/200. The image ID of (a), (b), and (c) are LC80650182013237LGN00,
LC80430122014214LGN00, and LC81990402014267LGN00, respectively.
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5. Discussion and Analysis
5.1. Robustness Analysis

To evaluate the robustness of the proposed method, we conducted a series of experi-
ments as follows: (1) experiment results on the same area under different seasons and (2)
experiment results on different land cover types.

5.1.1. Results on the Same Area under Different Seasons

In Figure 11, we present the cloud detection results on the same area under different
seasons, i.e., Spring, Summer, Autumn, and Winter. Satellite images obtained from this
area include different land cover types, such as mountain, village, urban, water, ocean,
plant, and farmland areas. In Figure 11, overall accuracy (OA) of Spring, Summer, Autumn,
and Winter images are 98.21%, 97.70%, 95.79%, and 96.03%, respectively. Experiment
results show that the proposed semi-supervised cloud detection method SSCDnet is able to
achieve a promising performance under different radiance (i.e., same area and different
seasons). However, there is still a large number of misclassified pixels in the experiment
results. These misclassified pixels are located mostly near the cloud object boundaries and
thin cloud areas, which is also a difficult problem for most CNN-based cloud detection
works, such as [7,19,27,33–35].

(a) (b) (d)(c)
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Legend Cloud Non-cloud Misclassification

OA=96.03%OA=98.21% OA=97.70% OA=95.79%

Figure 11. Cloud extraction results of SSCDnet on Landsat-8 OLI data under different seasons (labeled
proportion is 1

20 ). Where, (a) is the Spring season (ID: LC08_L1TP_122033_20160411_20170326_01_T1),
(b) is the Summer season (ID: LC08_L1TP_122033_20180706_20180717_01_T1), (c) is the Au-
tumn season(ID: LC08_L1TP_122033_20181111_20181127_01_T1), and (d) is the Winter season (ID:
LC08_L1TP_122033_20150103_20170415_01_T1).

5.1.2. Results on Different Land Cover Types

In Figure 12, we present the experiment results on twelve sub images with different
land cover types. Results show that these corresponding cloud detection results obtained
by SSCDnet show consistency with the ground truth when our CNN model is trained with
a limited number of labeled dataset (labeled proportion is 1

10 ), except for some misclassified
pixels located near cloud object boundaries and thin cloud areas.
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Figure 12. Cloud extraction results (1200 × 1200) of SSCDnet on Landsat-8 OLI data under different
land cover types. Where, (a,b) are barren/desert areas. (c,d) are mountain/plant areas. (e,f) are farm-
land/villages areas. (g,h) are urban/river areas. (i,j) are mountain/lake areas. (k,l) are ocean areas.

To be specific, for tough cases, such as barren/desert areas (Figure 12a,b) and urban
areas (Figure 12g,h), SSCDnet is able to achieve a promising performance on these land
cover types. In addition, SSCDnet also shows promising performance on water areas,
such as lake (Figure 12i,j), river (Figure 12h), and ocean (Figure 12k,l) areas. Except for
snow, buildings, and some white objects, few ground objects affect cloud detection, and
SSCDnet can easily obtain promising results in some general cases, such as mountain/plant
(Figure 12e,f) and farmland/village (Figure 12g,h) areas. In general, results in Figure 12
demonstrate that SSCDnet has a robust cloud detection performance on different land
cover types.

5.2. Computational Complexity Analysis

To analyze the computational complexity of SSCDnet, we evaluate computational
complexity of these networks with six evaluation criterions, which are floating point
operations (FLOPs), number of trainable parameters, training time, training GPU memory
usage, testing time, and testing GPU memory usage. In Table 8, we list results of different
competing methods. FLOPs are calculated from input data with image size of 321 × 321.
Training times of all methods are obtained from 5000 iterations. Training GPU memory size
is obtained by setting batch size of 4 and image size of 321 × 321. Testing time is obtained
by testing 20 scene Landsat-8 OLI satellite images with image size of 8 k × 8 k. Training
GPU memory size is obtained by setting batch size of 1 and image size of 1200 × 1200.
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During training, both the segmentation network and discriminator network are trained
simultaneously. Discriminators of different SSL methods have different raw input data chan-
nels, which results in these models having different model parameters, different computational
complexity and training times, and different GPU memory requirements. In Table 8, we can
see that FLOPs, number of parameters, and training GUP memory usage of SSCDnet are
higher than those of competing methods. This is because SSCDnet performs intermediate
feature map domain adaptation alignments, while competing methods have no such opera-
tion. Feature map alignment requires more computations and GPU memories. In addition,
the discriminator network for feature alignment further increases the number of training
parameters. Luckily, the longest training time is not the SSCDnet but Hung et al. [43].

During testing, we only need to use the segmentation network to detect clouds instead
of the discriminator network. Since all the methods use the same baseline segmentation
network, i.e., DeepLabV2 [51], all these methods share the same testing times and GPU
memory usage. In Table 8, we can see that it takes about 400 s to detect 20 scenes Landsat
8-OLI satellite images with image size of 8 k × 8 k. In other words, it takes 20 s to detect an
image. 2849 MB GPU memory is required to process an image with size of 1200 × 1200.

Table 8. Computational complexity analysis of different semi-supervised methods and the baseline
method (DeepLabV2 [51]).

Methods GFLOPs Parameters Training Time Training GPU Testing Time Testing GPU
DeepLabV2 [51] 74.03 43.94 M 1118.9906 s 10,079 MB 400.7494 s 2849 MB

DAN [37] 76.67 46.70 M 2129.5402 s 10,297 MB 400.7494 s 2849 MB
Hung et al. [43] 76.61 46.70 M 10,178.0476 s 10,297 MB 400.7494 s 2849 MB

s4GAN [40] 76.68 46.70 M 2224.8972 s 10,341 MB 400.7494 s 2849 MB
SSCDnet 410.56 61.91 M 2771.0219 s 10,435 MB 400.7494 s 2849 MB

The code for computational complexity is available from https://github.com/sovrasov/flops-counter.pytorch
(accessed on 24 April 2022). 1 GFLOPs = 1× 109 FLOPs. 1 M = 1× 106. 1 MB = 1× 106 bytes.

5.3. Limitations

Although SSCDnet achieves a promising cloud detection performance on both GF-
1 WFV and Landsat-8 OLI data, there is still a large number of misclassified pixels in
tough cases when using a limited number of labeled samples. Since urban and floating ice
areas show the similar color or texture with the clouds, and thin cloud objects show few
differences with underground objects, it is difficult for SSCDnet to handle these areas when
using a limited number of labeled samples as shown in Figure 13, where Figure 13a,b are
the results of GF-1 WFV data (GF1_WFV2_W70.8_N19.2_20140801_L2A0000292230), while
Figure 13c,d are the results of Landsat-8 OLI dat (LC81180382014244LGN00).

Experiment results in Figure 13a,b show that there are many misclassified pixels at
urban and floating ice areas when labeled sample proportion is 1

200 and 1
100 . When labeled

sample proportion is more than 1
40 , the qualitative results remain basically stable and show

consistency with the ground-truth. Results in Figure 13c,d indicate that capturing sharp
and detailed object boundaries in thin cloud areas is still very difficult even trained with
fully labeled samples. Adding a sufficient of thin cloud samples for network training may
obtain good detection performance. In future work, we will focus on this point to further
improve this work.

https://github.com/sovrasov/flops-counter.pytorch
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Figure 13. Cloud extraction results (1200 × 1200) of SSCDnet on GF-1 WFV and Landsat-8
OLI data under different labeled sample proportions. (a,b) are the results of GF-1 WFV data
(GF1_WFV2_W70.8_N19.2_20140801_L2A0000292230), while (c,d) are the results of Landsat-8 OLI
data (LC81180382014244LGN00).

6. Conclusions

Semi-supervised learning is an effective training strategy, which is able to train a
segmentation network by using a limited number of pixel-wise labeled samples and a
large number of unlabeled ones. In this paper, we present a semi-supervised cloud de-
tection network, named SSCDnet. Since there are domain distribution gaps between the
labeled and unlabeled datasets, we take the domain shift problem into account for the
semi-supervised learning framework and propose feature-/output-level domain adapta-
tion strategy to reduce domain distribution gaps, thus improving SSCDnet to generate
trustworthy pseudo label for unlabeled data. A high certain pseudo label provides positive
supervised signals for segmentation network learning through self-training. Experimental
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results on GF-1 WFV and Landsat-8 OLI datasets demonstrate that SSCDnet is able to
achieve promising performance by using a limited number of labeled samples. It shows
great promise for practical application on new satellite RS imagery in the presence of less
labeled data available.

Although SSCDnet shows good performance, there is still much room for improve-
ment, such as hyper-parameters setting of loss function and threshold setting of pseudo-
labeling. Different cloud detection datasets have different domain distributions. We need
to update these parameters to achieve a promising performance on different datasets. In
addition, different ground objects have different characteristics, and the performance of
SSCDnet on other objects detection also needs to be further evaluated. In our future work,
we will further evaluate this method on other cloud detection datasets and other object
detection tasks. In addition, SSCDnet performs poorly on cloud boundaries and thin
cloud regions, which requires our future efforts to improve it. In our future work, we will
also explore how to utilize some auxiliary information, such as land use and land cover
(LULC) map, water index map, and vegetation index map, to improve the cloud detection
performance.

In general, a semi-supervised learning training strategy provides us with an effective
way for cloud detection from RS images in the presence of less labeled data available. In
addition, this strategy may provide us a promising way for other object detection tasks
such as water, vegetation, and building detection.

In order to promote understanding of the paper’s technology, we released the code of
SSCDnet. It is available at: https://github.com/nkszjx/SSCDnet (accessed on 24 April 2022).
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