Mou, LiChao and Hua, Yuansheng and Saha, Sudipan and Bovolo, Francesca and Bruzzone, Lorenzo and Zhu, Xiao Xiang (2022) Detecting Changes by Learning No Changes: Data-Enclosing-Ball Minimizing Autoencoders for One-Class Change Detection in Multispectral Imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, p. 5629716. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3200985. ISSN 0196-2892.
PDF
- Published version
20MB |
Official URL: https://ieeexplore.ieee.org/document/9870684
Abstract
Change detection is a long-standing and challenging problem in remote sensing. Very often, features about changes are difficult to model beforehand, thus making the collection of changed samples a challenging task. In comparison, it is much easier to collect numerous no-change samples. It is possible to define a change detection approach using only easily available annotated no-change samples, which we henceforth call one-class change detection. Autoencoder networks being trained on no-change data are natural candidates for addressing this task due to their superior performance when compared with other one-class classification models. However, the autoencoders usually suffer from the problem of overgeneralization, i.e., they tend to generalize too well, thus risking properly reconstructing changed samples. In this article, we propose a novel data-enclosing-ball minimizing autoencoder (DebM-AE) that is trained with dual objectives—a reconstruction error criterion and a minimum volume criterion. The network learns a compact latent space, where encodings of no-change samples have low intraclass variance, which as counterpart has the identification of changed instances. We conducted extensive experiments on three real-world datasets. Results demonstrate advantages of the proposed method over other competitors. We make our data and code publicly available ( https://gitlab.lrz.de/ai4eo/reasoning/DebM-AE; https://github.com/lcmou/DebM-AE ).
Item URL in elib: | https://elib.dlr.de/192677/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Detecting Changes by Learning No Changes: Data-Enclosing-Ball Minimizing Autoencoders for One-Class Change Detection in Multispectral Imagery | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | August 2022 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 60 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2022.3200985 | ||||||||||||||||||||||||||||
Page Range: | p. 5629716 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Autoencoder network, change detection, one-class classification, remote sensing | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||||||
Deposited On: | 20 Dec 2022 10:06 | ||||||||||||||||||||||||||||
Last Modified: | 20 Dec 2022 10:06 |
Repository Staff Only: item control page