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Abstract— Change detection is a long-standing and challenging
problem in remote sensing. Very often, features about changes
are difficult to model beforehand, thus making the collection
of changed samples a challenging task. In comparison, it is
much easier to collect numerous no-change samples. It is pos-
sible to define a change detection approach using only easily
available annotated no-change samples, which we henceforth call
one-class change detection. Autoencoder networks being trained
on no-change data are natural candidates for addressing this
task due to their superior performance when compared with
other one-class classification models. However, the autoencoders
usually suffer from the problem of overgeneralization, i.e., they
tend to generalize too well, thus risking properly reconstructing
changed samples. In this article, we propose a novel data-
enclosing-ball minimizing autoencoder (DebM-AE) that is trained
with dual objectives—a reconstruction error criterion and a
minimum volume criterion. The network learns a compact latent
space, where encodings of no-change samples have low intraclass
variance, which as counterpart has the identification of changed
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instances. We conducted extensive experiments on three real-
world datasets. Results demonstrate advantages of the proposed
method over other competitors. We make our data and code pub-
licly available (https://gitlab.lrz.de/aideo/reasoning/DebM-AE;
https://github.com/lcmou/DebM-AE).

Index Terms— Autoencoder network, change detection, one-
class classification, remote sensing.

I. INTRODUCTION

E LIVE in a dynamic world where things change

all the time. The recent advances in remote sensing
platforms open up new possibilities for observing dynamic
changes of our planet from a bird’s eye view. New images
are populated daily, e.g., the Landsat 8 satellite acquires more
than 700 scenes a day, and in the same time span Sentinel-2
produces over 4 Terabytes of fresh images. Hence, multi-
temporal data analysis is becoming increasingly important.
In the field of multitemporal image analysis [1], [2], change
detection is a long-standing research problem. It deals with
changes both in natural resources and in man-made structures.
For instance, in the former case, change detection enables
deforestation monitoring, disaster assessment, and crop stress
detection [3], [4]. In the latter one, it can aid in city monitoring
and planning [5], [6], [7].

There are numerous methods for detecting changes in
remote sensing imagery. For the biggest part, they can be
divided into three classes, supervised, semisupervised, and
unsupervised ones, differing in the use of labeled data.
Both the supervised and semisupervised methods require
well-labeled samples from changed and no-change areas, and
the difference between them is that the latter also exploit
unlabeled samples to assist the labeled ones in the training
phase. Albeit successful, these approaches suffer from the
fact that in most situations, ground-truth data, particularly
for changed regions, are difficult to acquire. This is because
features about changes are often unknown or difficult to model
beforehand because of the variety of possible kinds of change.
For this reason, the unsupervised change detection models are
conceptually of high interest and have been widely studied
over the past decades [8], [9], [10], [11]. The underlying
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assumption of unsupervised models is that nothing is known
about the data and task, and samples are grouped into two or
more categories (change/multitype changes versus no change)
by clustering or thresholding algorithms.

To take a deep dive into this task, we observe how humans
identify the changes in bitemporal images. A human annotator
usually switches between the pre- and post-images repeatedly
and tries to spot significant differences (change) from the
background (no change). The annotator may not be aware
of the expected changes, but has a clear understanding and
knowledge of no change. On the other hand, information
about changes is often hard to obtain in many applications,
e.g., disaster management, but it is much easier to have
information on the nature of no-change regions, and this can be
even beforehand. This has motivated researchers to formulate
binary change detection as a one-class classification task where
samples of only one class, i.e., no-change, are used to train
a model that is used to distinguish changed instances from
no-change ones. Hereafter, we call this paradigm as one-class
change detection.

We find that autoencoders are natural candidates for this
task: these models can learn no-change profiles given only
no-change samples and identify changes as samples not
conforming to the no-change profiles. The autoencoders are
trained by minimizing the reconstruction error on no-change
instances and use the reconstruction error as an indicator of
changes, i.e., it is assumed that changed samples cannot be
reconstructed well. However, we find that this assumption does
not always hold, and the autoencoders often overgeneralize,
that is, sometimes they generalize so well to closely recon-
struct changed pixel pairs, thus in the end failing to recognize
them as such. To address it, we propose a data-enclosing-
ball minimizing autoencoder (DebM-AE). Specifically, in this
article, we consider one-class change detection in multispectral
images and a pixel-based model. In our model, an autoencoder
is trained with dual objectives—a traditional reconstruction
error criterion and a minimum volume criterion. The latter
minimizes the volume of the space enclosing training sample
pairs in the latent space of the autoencoder. The result of
training is that the encoder learns to transform no-change
instances to an extremely compact feature space where the
samples have very low intraclass variance. Thus, changed pixel
pairs can be better separated. The main contributions of this
work are as follows. First, we explore the use of the autoen-
coder framework for supervised one-class change detection
tasks in which only easily available labeled no-change samples
are needed for model training. This paradigm shows superior
performance compared with the conventional one-class classi-
fication algorithms and outlier detection models. Furthermore,
we analyze the overgeneralization problem of autoencoders
in this task. To address it, we propose a novel and effective
autoencoder network, namely, DebM-AE, which is trained
based on dual objectives and can aid in separating and thus
recognizing changed pixel pairs more accurately. Second,
we build polygonal training/test masks for four real-world
datasets and use them to evaluate the effectiveness of the pro-
posed network. Moreover, we conduct experiments to verify
that our method has good transferability.
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The remainder of this article is organized as follows.
Section II gives a brief overview of the current methods for
change detection in bitemporal remote sensing images with
a focus on the supervised, semisupervised, and unsupervised
models, as well as the existing approaches for one-class
change detection. Section III presents our proposed DebM-AE
architecture. In Section IV, the datasets, evaluation metrics,
and competitors are introduced. Furthermore, we present the
numerical results and a discussion of the observed model
performance in Section V. Finally, Section VI concludes this
article.

II. RELATED WORK

In this section, we explore the state-of-the-art change detec-
tion methods which are divided into three categories, super-
vised, semisupervised, and unsupervised models, differing in
the use of labeled data. The one-class models are particularly
reviewed in Section II-A.

A. Supervised Change Detection

The development of supervised learning algorithms in the
field of machine learning provides insights into the supervised
change detection methods. Early efforts have gone into seeking
out conventional classifiers, to name a few, random forest [12],
[13], [14] and support vector machine (SVM) [15], [16].
In recent years, with the rising popularity of deep learning,
neural networks have been applied to change detection tasks.
For instance, [17] uses a long short-term memory (LSTM)
network—a kind of recurrent neural network (RNN)—to
detect the changes in bitemporal multispectral images, and
this model shows good generalization results. Later, [18]
proposes a recurrent convolutional neural network (CNN) that
is able to significantly remove salt and pepper noise from
change detection maps and thus obtain better results. In [19],
a 2-D CNN is introduced to learn high-level features,
and in [20], the authors use a recurrent 3-D CNN to
extract spectral-spatial-temporal features for change detec-
tion. In [21], the authors introduce a Siamese CNN to extract
features of bitemporal images and use a weighted contrastive
loss to alleviate the influence of imbalanced data. For high spa-
tial resolution remote sensing images, this task can be deemed
as a dense (pixel-wise) prediction task and solved by the
semantic segmentation network architectures [22]. In [23], sev-
eral Siamese U-Nets are designed for semantic change detec-
tion with very high-resolution images. The authors of [24]
use an improved UNet++ for this task. To tackle pseudo
changes caused by seasonal transitions in change detection
tasks, [25] proposes a metric-learning-based generative adver-
sarial network (GAN), termed MeGAN, to learn seasonal
invariant feature representations. Furthermore, some modern
network architectures and techniques, e.g., CapsNet [26], [27],
self-supervised learning [28], [29], attention mechanism [30],
and Transformer [31], also shed light on this problem. For
example, in [26], the authors use the convolutional capsule
networks to extract vector-based features of bitemporal images
and then produce binary change maps by computing their
cosine similarities and differences. [31] tokenizes feature maps
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learned by a CNN backbone and feed them into Transformer
layers for encoding contexts in space-time. Afterward, tokens
are rearranged as feature maps, of which differences are
calculated by subtraction for predicting final change maps.
Although successful, these models require massive training
samples to provide sufficient supervision information, which
restricts their application scenarios.

It is noteworthy that in change detection, supervision can
be in the form of either labeled training pixels scattered
across the target scene [18] or labeled training scenes that are
spatially disjoint with the target one [23]. Our work belongs
to the first category but uses polygon annotations, which is
relevant in scenarios where a human annotator can quickly
label some data, but not the entire target scene. For polygon-
level annotations, pixels within each polygon are assigned the
same label (change or no change). In addition, we also show
the performance of the proposed method using the second
category of labeling (see Section V-D).

One-class change detection is a special case of super-
vised learning algorithms, as only no-change samples are
used. In [32], the authors make use of a one-class SVM
(OC-SVM) for change detection. The authors of [33] propose
a semisupervised OC-SVM and apply it to one-class change
detection. [34] exploits a cost-sensitive SVM for the same
task and uses an entire solution path algorithm to facilitate
and accelerate the parameter selection of the cost-sensitive
SVM. From bitemporal images to long image time series,
in [35], the authors propose a one-class method for change
detection in image time series, where no-change image time
series is used to train an LSTM network that is subse-
quently applied to detect the changes from target image time
series. Moreover, when the number of changed instances
is smaller than that of no-change samples in a scene, the
outlier detection methods? [36], [37], [38], [39], [40] can be
applied into the one-class change detection tasks. We also
evaluate several outlier detection approaches in our case
(see Sections IV and V).

B. Semisupervised Change Detection

Semisupervised learning allows making use of a huge
amount of unlabeled data and few labeled samples, thus
reducing the workload of data annotation to some extent.
There have been several works in this direction. For example,
in [41], a Gaussian process algorithm is introduced for semi-
supervised change detection. [42] presents a metric learning
method with Laplacian regularization by which labels can
be propagated from labeled samples to unlabeled instances.
Most recently, the authors of [43] propose a semisupervised
change detection approach, where bitemporal images are first
encoded as a graph via a multiscale parcel segmentation
algorithm, and a graph convolutional network (GCN) is used
for semisupervised node classification on this graph. In [44],
the authors propose to extract multiscale features and learn
discriminant metrics by highlighting the contribution of simple
training samples. As a popular architecture in semisupervised
change detection, GAN is used to generate more training
samples [45] and enhance the feature distribution consistency
of final predictions [46].
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C. Unsupervised Change Detection

Most change detection models are unsupervised, as collect-
ing labeled data is difficult. In the literature, a widely used
methodology is based on image algebra, and the classical
models are change vector analysis (CVA) [8], [9] and its vari-
ations [10], [11]. Furthermore, some image-transformation-
based unsupervised change detection approaches have been
proposed to learn new feature representations from the original
data, to highlight changes while suppressing no changes in
the new feature spaces. For instance, [47] and [48] apply
principal component analysis (PCA)—a well-known subspace
learning algorithm—on stacked images and difference images,
respectively, for unsupervised change detection tasks. In [49],
the authors introduce a multivariate statistical transformation,
termed multivariate alteration detection (MAD), to identify
land cover changes in satellite images, and this method is
invariant to the linear scaling of the input data. The authors
of [50] propose to make use of slow feature analysis (SFA),
which is capable of learning slowly varying features from a
time series, in change detection. By doing so, in the learned
feature space, differences among no-change pixel pairs are
suppressed so that changed instances stand out more clearly.
Later, deep SFA, a combination of networks and SFA, is pro-
posed in [51]. In [52], self-supervised multitemporal segmen-
tation is used for unsupervised change detection. In addition,
some networks, e.g., autoencoders [53], [54], [55], [56], [57],
deep belief networks (DBNs) [58], and CNNs [19], [20],
[59], [60], [61], [62], are also used to learn better feature
representations in an unsupervised fashion for unsupervised
change detection. The authors of [63] incorporate deep neural
networks and low-rank decomposition for predicting saliency
maps where high values indicate large change probabilities.
Another important branch in unsupervised change detection
is heterogeneous change detection, also known as multimodal
change detection, which aims to detect the changes between
heterogeneous images. In [64], the authors propose to build up
an observation field from paired pixels in bitemporal heteroge-
neous images for modeling features that are invariant to diverse
imaging modalities. In [65], the authors train a stacked sparse
autoencoder for heterogeneous change detection. [66] mea-
sures the similarity of affinity matrices computed from bitem-
poral heterogeneous images to identify pixels being likely to
be unchanged, which are then used as pseudo-training data to
learn transformations between different modalities. Following
this work, [67] introduces vertex degrees and cycle consistency
in learning such transformations. Aiming to project features
of multimodal images into a shared space, [68] proposes
an iterative coupled dictionary learning model to establish
coupled dictionaries for multimodal images, and [69] takes
variational autoencoder (VAE) as the backbone and builds
coupled GANs for heterogenous change detection.

III. METHODOLOGY

A. Autoencoders in One-Class Change Detection and Their
Limitations

A conventional autoencoder usually includes two major
components: an encoder and a decoder. The former attempts
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Fig. 1. Visualization of the latent space of an autoencoder for one-class
change detection, obtained by projecting to the first two principal components.
Blue and red points indicate no-change and changed samples in the test set,
respectively. As can be seen, a considerable number of changed samples share
the same feature space with no-change ones, demonstrating the overgeneral-
ization problem of the autoencoder.

to represent the input in a latent space, and the latter learns to
reconstruct the input from the encoded representation. Let us
assume that we have pre- and post-change images acquired
over the same geographical area. We stack them together
and use them as the input to an autoencoder. Note that only
pairs of no-change pixels are used in the training phase.
Formally, let X be the domain of labeled no-change samples
and Z represent the domain of encodings. Thus, the encoder
and the decoder can be denoted as f(-) : X — Z and
g() : Z — X, respectively. Given a no-change pixel pair
x; € X, we have

zi = [(x;; Op)
X = g(zi; ©y)

(1
2)

where z € Z, O, and ®, are the parameters of the
encoder and the decoder, respectively, and X; denotes the
reconstruction. Training the autoencoder means optimizing
the parameters {®,, @,} to reduce the average loss on the
training samples. In the context of one-class change detection,
an autoencoder makes use of the reconstruction error as a
change score. This method assumes that in the inference phase,
no-change samples can be reconstructed more accurately than
changed ones.

In theory, the autoencoder architecture is an ideal model
for the one-class change detection tasks. However, in real-
world scenarios, we observe that it often suffers from the
problem of overgeneralization, i.e., sometimes an autoencoder
trained on no-change examples generalizes so well that it
is able to reconstruct some changed instances perfectly in
the inference phase. Fig. 1 shows an example visualization
of the learned latent space of an autoencoder for one-class
change detection. This is obtained by projecting to the first two
principal components, and red and blue indicate change and no
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change, respectively. As can be seen, a considerable number of
changed samples share the same feature space with no-change
instances, demonstrating the overgeneralization problem of the
autoencoder. There are two possible reasons: 1) some changed
pixel pairs share common components (e.g., spectral bands)
with no-change ones and 2) the encodings of changed exam-
ples have high intraclass variance, which leads to difficulty in
distinguishing changes from no changes.

B. Data-Enclosing-Ball Minimizing Autoencoder

Our insight is that reducing the intraclass distance of
training data (i.e., labeled no-change samples) in the latent
space can help reduce the overgeneralization problem of the
autoencoder in the one-class change detection tasks. In this
work, a new autoencoder architecture is proposed with dual
objectives—a traditional reconstruction error criterion and a
minimum volume criterion that minimizes the volume of
the latent space enclosing encoded representations of train-
ing samples. Fig. 2 shows the overview architecture of the
proposed DebM-AE.

1) Reconstruction Error Criterion: In this article, we make
use of the £;-norm-based mean square error (MSE), that is,

N
Lree(©, 04) = D |lx; — &ill3

i=l1

3)

as the reconstruction loss, where N is the number of training
samples. The proposed model updates the encoder and the
decoder to minimize the reconstruction errors of the inputs.

2) Minimum Volume Criterion: Our aim is to jointly learn
the encoder parameters ®, together with minimizing the
volume of the enclosing space of training samples in the latent
space Z. Here, we make use of a hypersphere as the enclosing
space, as it is simple, effective, and easy to implement.
Let ¢ and R be the center and radius of the hypersphere,
respectively. Thus, the minimum volume criterion can be
defined as follows:

N
1
Luv(R,¢,0,) = R* + N > max{0, [lz; — c|” — R*}.
i=1

“)

Minimizing the first term of this objective, R?, minimizes
the volume of the hypersphere. The minimization of the
second term is a penalty that encodings outside the sphere
(lzi — ¢l> > R?) get penalized. This makes the hypersphere
include as much training data as possible. The hyperparameter
u € (0,1] controls the trade-off between the volume and
boundary violations. By optimizing (4), the encoder learns to
closely map no-change pixel pairs to the hypersphere center c.
Through this, we can learn a compact latent space for no
change. Note that the more compact the latent space, the
better the robustness and transferability of our model. After
sufficient training, changed samples can be better separated,
as they are supposed to be further away from ¢ or outside the
sphere.

Furthermore, we consider a special case where the hyper-
sphere becomes a point (R = 0). In this case, (4) can be
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Fig. 2. Architecture of a DebM-AE. The top row shows a standard autoencoder that reconstructs a no-change pixel pair x; from a latent encoding z; based on
the reconstruction error criterion. The bottom row shows our minimum volume criterion that minimizes the volume of the space enclosing training examples
in the latent space. In the inference phase, a sample whose reconstruction loss is greater than a threshold is predicted as a changed instance.

simplified and rewritten as follows:

N
1
2
L =5 2 Nz = el 5)
i=1
i.e., the minimum volume criterion is converted into a
quadratic loss which penalizes the distance of each encoded
representation to the hypersphere center.

C. Learning and Inference

We jointly optimize the parameters of the proposed network
{®,, Oy, R, ¢} in an end-to-end fashion by making use of the
following loss function:

L= Lrec + ALy (6)

where 4 is a hyperparameter to introduce a weight on the min-
imum volume criterion and can model the relative importance
of the two criteria.

In the inference phase, we use the trained network to detect
changes by determining how well the network can reconstruct
the input pixel pairs. More specifically, we

1) calculate MSE loss on training samples and obtain the

mean (mean) and standard deviation (std) of loss values;

2) take mean + 2 * std as the threshold [70], [71], [72];

3) predict a sample whose reconstruction loss is greater

than the threshold as a changed instance.

IV. DATASET AND EXPERIMENTAL SETUP
A. Data Description

We evaluate the proposed network on three datasets. All of
them are acquired by the Landsat Enhanced Thematic Mapper
Plus (ETM+) sensor onboard the Landsat satellite. Each image
in the datasets has a spatial resolution of 30 m/pixel and six
spectral bands. They are preprocessed (e.g., coregistration and
calibration).

1) Kunshan Data: The first dataset consists of two images
captured in March 2000 and February 2003, respectively, and
covers the city of Kunshan, China. It is with a WGS-84
projection and a coordinate range of 32°26’09N-32°32/28N,
119°50"32E-119°58'24E. The spatial size of the two images
is 800 x 800 pixels. The main types of changes in this dataset

Fig. 3. (Top Row) Bitemporal images in the Kunshan dataset. (Bottom
Row) Polygon-level training (left) and test (right) set maps where blue and
red pixels indicate no-change and changed pixel pairs, respectively.

involve city expansion and farmland changes. Fig. 3 shows the
two images as well as training and test set maps.

2) Lake Eppalock Data: The second dataset covers the Lake
Eppalock in North Central Victoria, Australia. The bitemporal
images of the dataset are captured in February 1991 and
March 2009 with a coordinate range of 36°49'10S-37°00'52S,
144°27'52E~144°37'35E. The spatial size of both the images
is 602 x 631 pixels. Several types of changes in natural
resources, e.g., water, are presented in this dataset. Fig. 4
shows the two images, a training set map and a test set map
for evaluating the change detection methods.

3) Taizhou Data: The third dataset (cf. Fig. 5) includes
two preprocessed images covering the city of Taizhou, China.
The two images are acquired in March 2000 and February
2003 with a WGS-84 projection and a coordinate range of
31°14'56N-31°27'39N, 120°02'24E-121°07'45E, and each of
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TABLE I
NUMBERS OF TRAINING AND TEST SAMPLES IN THE KUNSHAN, LAKE EPPALOCK, TAIZHOU, AND BEIRUT DATASETS

data sefs

| Training | Test | Total
Data Set | No change | Change | No change | Change | No change

| # Polygons # Pixels | # Polygons # Pixels | # Polygons # Pixels | # Polygons # Pixels | # Polygons # Pixels
Kunshan | 15 8224 | 214 17327 | 69 40777 | 214 17327 | 84 49001

Lake Eppalock ‘ 15 1423 ‘ 32 3880 ‘ 30 3592 ‘ 32 3880 ‘ 45 5303

Taizhou | 10 3385 | 6l 4555 | 50 14076 | 6l 4555 | 60 17461
Beiru* | 18 76442 | - 33018 | - 1152240 | - 33018 | - 1228682

* indicates that all pixels outside training polygons are used to test the model performance.

7

£

~a

y

Fig. 4. (Top Row) Bitemporal images in the Lake Eppalock dataset. (Bottom
Row) Polygon-level training (left) and test (right) set maps where blue and
red pixels indicate no-change and changed pixel pairs, respectively.

them has 400 x 400 pixels. The main changes shown in this
dataset are city expansion, changes in water bodies, and soil
changes.

4) Beirut Data: The forth dataset (see Fig. 6) is repro-
duced from the ONERA Satellite Change Detection (OSCD)
dataset [73]. To accord with other datasets, we select bitem-
poral images of one city, Beirut, which is very challeng-
ing due to its large scale and various land covers. Specifi-
cally, the images were collected from Sentinel-2 satellites in
August 2015 and October 2017, and all 13 bands are avail-
able, leading to variant spatial resolutions (10-60 m/pixel).
Images of lower resolutions are upsampled to ensure that
image sizes with respect to diverse bands are identical, i.e.,
1070 x 1180 pixels. In the Beirut dataset, all the pixels are
automatically classified into change or no change by resorting
to OpenStreetMap data, and thus, changes mainly occur in
buildings and roads.

Table I shows the numbers of training and test instances in
the three datasets.

A\

Fig. 5. (Top Row) Bitemporal images in the Taizhou dataset. (Bottom Row)
Polygon-level training (left) and test (right) set maps where blue and red
pixels indicate no-change and changed pixel pairs, respectively.

B. Implementation

As to the implementation, the encoder consists of two fully
connected layers with 128 and 512 units, respectively, and
yields a 512-D latent representation z;. The decoder recon-
structs X; via two fully connected layers, and the numbers
of their units are 128 and C. Here, C denotes the number
of channels of the input pixel pairs. The outputs of the first
three layers are activated with rectified linear units (ReLUs),
while the last layer is linearly activated. Table II shows
the architecture of the used autoencoder. ¢ is defined as
a 512-D learnable vector and initialized with values sampled
from a normal distribution in the training phase, and the initial
R is set to 0. All the weights of the fully connected layers are
initialized with a Glorot uniform initializer. Besides, we set u
as 0.01 empirically, and 4 is set as 1. The learning rate
is fixed as le — 4, and the size of minibatches is 32. The
networks are implemented with TensorFlow and trained on one
NVIDIA Tesla P100 16-GB GPU. All the network weights are
trainable and optimized by Nestrov Adam [74] using f; = 0.9,
p2=0.999, and € = le — 8 as recommended.
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Fig. 6. (Top Row) Bitemporal images in the Beirut dataset. (Bottom Row)
Polygon-level training (left) and test (right) set maps where blue and red
pixels indicate no-change and changed pixel pairs, respectively.

TABLE II
ARCHITECTURE OF THE AUTOENCODER

Stage | Layer | Activation | Output size
Input | - | - | NxC
‘ Fully-connected, 128 units ‘ ReLU ‘ N x 128
Encoder
| Fully-connected, 512 units | ReLU | N x 512
D | Fully-connected, 128 units | ReLU | N x 128
ecoder
| Fully-connected, C units | - | NxC

N denotes the size of mini-batch.
C represents the channel dimension of each pixel.

C. Evaluation Metrics and Competitors

To quantitatively evaluate the performance of the proposed
one-class change detection model and other competitors,
we make use of the following metrics.

1) Kappa Coefficient: Kappa is a statistical measurement
to measure the agreement between a predicted change
detection map and the ground truth. In general, it is
thought to be a more robust indicator than a simple
percentage agreement calculation, as the possibility of
a random agreement is taken into account. Note that
several works in remote sensing point out issues with
using Kappa coefficient as a performance metric [75],
[76], [77], [78]. Since it is widely used in the change
detection tasks, in this article, we still make use of it as
one of the metrics.

2) Overall accuracy (OA): This metric indicates the number
of samples that are correctly identified, divided by the
number of test instances.

3) Precision: This index calculates the ability of a model
to not label a true negative observation as positive.
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4) Recall: Recall, a.k.a., sensitivity, calculates the capabil-
ity of a model to find positive observations in the test
set.

5) F1 score: We use F1 score to compare any two models.
It is difficult to compare two models with low precision
and high recall or vice versa. F1 score can help measure
recall and precision at the same time. It exploits har-
monic mean in place of arithmetic mean by punishing
extreme values more.

6) False alarm rate (FAR): FAR, also known as false pos-
itive ratio, indicates the probability of wrongly detected
negatives, e.g., no-change pixels in our case.

7) Missed detection rate (MDR): MDR measures the
probability that a model fails to infer true positive
observations.

Note that we compute F1 score, precision, and recall for
both change and no change classes.

Considering that the proposed method is for one-class
change detection, we take the one-class classification algo-
rithms as the main competing methods, to evaluate the effec-
tiveness of our approach. To verify the benefit of using
labeled no-change samples, we also include unsupervised
change detection models in comparisons. Besides, given that
the outlier detection approaches can be applied to the one-class
change detection tasks, we compare our network with some
outlier detection algorithms. All the methods included in
experiments are summarized as follows.

1) CVA [9], a classical image-algebra-based unsupervised
model for change detection in multi and hyperspectral
images.

2) PCA [48], [79], a transformation-based unsupervised
approach having a fast computing speed.

3) MAD [49], a classical image-transformation-based unsu-
pervised change detection method.!

4) IRMAD [80], iteratively reweighted MAD, which is an
extension of MAD by introducing an iterative scheme.’

5) SFA [50], an SFA-based unsupervised change detection
method.?

6) DSFA [51], a network based on SFA for unsupervised
change detection.*

7) KPCAMNet [81], a Siamese deep network built on
weight-shared kernel PCA convolutions. The input of
each branch is an image patch, and the outputs are
clustered into change and no change in an unsuper-
vised manner. Note that compared with other com-
peting methods, this model uses spatial information
(patches).?

8) DSMSCN [82], a Siamese multiscale convolutional net-
work for change detection. Following the setting in [82],
we use CAV to generate pseudo labels.®

Uhttp://www.imm.dtu.dk/~alan/software.html

Zhttp://www.imm.dtu.dk/~alan/software.htm]

3htps://github.com/I-Hope-Peace/ChangeDetectionRepository/tree/master/
Methodology/Traditional

“https://github.com/rulixiang/DSFANet

Shttps://github.com/I-Hope-Peace/KPCAMNet

Shttps://github.com/I-Hope-Peace/DSMSCN
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9) cGAN [83], a conditional adversarial network for unsu-
pervised change detection.’

iForest [36], isolation forest, is an algorithm for outlier
detection. In our case, it builds an ensemble of isolation
trees for a given dataset, and then changes are the
samples that have shorter average path lengths on the
trees.®

EE [37], elliptic envelope, is an outlier detection model
that fits a robust covariance estimate to the data and thus
fits an ellipse to central data samples.”

LOF [38], local outlier factor, a density-based algorithm
to identify outliers/novelties in a dataset. It can be used
in a dataset, which has a mixture of data distributions,
and is applicable to our one-class change detection
tasks. LOF can be used as both an unsupervised outlier
detection model and a one-class classifier, and in our
experiments, we choose the latter.'”

SVDD [84], support vector data description, a one-
class classification model trying to find the smallest
hypersphere that contains all no-change samples from
the training set.!!

OC-SVM [15], a one-class SVM that separates
no-change instances from changed ones by finding a
hyperplane of maximal distance from the origin.'?
Deep SVDD [85], a network using the SVDD loss.
We make the structure of the used Deep SVDD model
consistent with that of the encoder of our DebM-AE for
a fair comparison.'?

VAE [86], VAE that imposes a probabilistic distribu-
tion, e.g., Gaussian, on the latent space and penalizes
the difference between the prior and posterior using
Kullback—Leibler divergence. The configuration of the
used VAE is the same as that of our DebM-AE described
in Section IV-B. Note that Zyean and zgq are separate
fully connected layers.

AE, an autoencoder whose configuration is the same as
above.
DebM-VAE,
on VAE.
DebM-AE, the proposed network implemented on AE.

10)

11)

12)

13)

14)

15)

16)

17)

18) the proposed network implemented

19)

V. RESULTS

In this section, the hyperparameters are evaluated in
Section V-A, and the effectiveness of the minimum volume
criterion is analyzed in Section V-B. Afterward, we com-
pare our model with the aforementioned competitors in
Section V-C, and Section V-D validates the transferability of

"https://github.com/llu025/Heterogeneous_CD/tree/master/Code-
Aligned_Autoencoders
Shttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
IsolationForest.html#sklearn.ensemble.IsolationForest
“https://scikit-learn.org/stable/modules/generated/sklearn.covariance.
EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope
10https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor
Mhttps://ww2.mathworks.cn/matlabcentral/fileexchange/69296-support-
vector-data-description-svdd
2https://www.csie.ntu.edu.tw/~cjlin/libsvm/
Bhttps://github.com/lukasruff/Deep-S VDD-PyTorch
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Fig. 7. Evaluation of hyperparameters x and 1. The highest Kappa (0.8316)
is achieved when x and A are set to 0.01 and 1, respectively.
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Fig. 8. Effect of the number of labeled polygons in the training set.

the proposed model. Section V-E explores the feasibility of
integrating spatial information into our model, and Section V-F
shows the effect of the number of polygon annotations.

A. Evaluation of Hyperparameters

We evaluate the following hyperparameters: x in (4) and 4
in (6). The former is a hyperparameter that controls the rela-
tive importance of the volume of the data-enclosing-ball and
boundary violations. It actually allows us to control the ratio
of outliers in our model during the training phase. The latter,
A, is a trade-off hyperparameter between the two objectives.
Fig. 7 shows that the Kappa coefficient increases initially as u
becomes larger, but slightly decreases after 4 = 0.01, and 4 of
large values can lead to a decrease in the network performance.
In our experiments, we use 4 = 0.01 and 4 = 1.

B. Ablation Study on the Minimum Volume Criterion

We report the numerical results in Tables III-VI. The
observed performance increase from VAE/AE to DebM-
VAE/DebM-AE is a central point of our article. Take AE
and DebM-AE as an example. The increases in Kappa are
0.0515, 0.2981, 0.0892, and 0.0727 on the Kunshan, Lake
Eppalock, Taizhou, and Beirut datasets, respectively, which
represents a significant gain. The fact that DebM-VAE/DebM-
AE outperforms VAE/AE can be attributed to learning a more
compact data-enclosing latent space for no-change pixel pairs.
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TABLE III
NUMERICAL RESULTS FOR THE EVALUATED MODELS ON THE KUNSHAN DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD
Model | Kappa OA Mean F1 | Change | No change

| | F1 score Precision Recal FAR MDR | FIscore Precision Recall

CVA | 04764 7823 7382 | 63.07 63.83 6232 1500 37.68 | 84.57 84.15 85.00

PCA | 05646 84.49 7748 | 6491 99.71 48.12 0.06  51.88 | 90.04 81.93 99.94

MAD \ 0.5513  83.25 77.19 \ 65.42 85.12 53.12 3.95 46.88 \ 88.95 82.82 96.05
IRMAD \ 0.5675  83.98 77.95 \ 66.42 88.59 53.13 291 46.86 \ 89.48 82.98 97.09
SFA \ 0.6058  83.72 80.28 \ 72.06 73.79 70.40 10.62  29.60 \ 88.51 87.66 89.38

DSFA \ 0.5660  78.51 78.06 \ 81.19 74.41 89.33 33.18  10.67 \ 74.93 85.29 66.82
KPCAMNet \ 0.8265  92.76 91.32 \ 87.80 88.20 87.40 4.97 12.60 \ 94.85 94.67 95.03
DSMSCN \ 0.6391  86.56 81.64 \ 72.13 94.50 58.32 1.44 41.68 \ 91.14 84.77 98.56
cGAN \ 0.6619  88.55 82.85 \ 72.95 95.27 59.10 1.04 40.90 \ 92.74 87.25 98.96
iForest \ 0.4763  77.80 73.81 \ 63.59 62.23 65.01 16.77  34.99 \ 84.03 84.85 83.23

EE \ 0.5025 8245 74.15 \ 59.51 95.34 43.25 0.90 56.75 \ 88.79 80.43 99.10

LOF \ 0.6314  82.24 81.09 \ 76.42 63.25 96.53 23.83 3.47 \ 85.75 98.10 76.17

SVDD \ 0.7624  89.46 88.07 \ 84.00 76.70 92.84 11.98 7.16 \ 92.14 96.66 88.02
OC-SVM \ 0.2097  56.74 56.43 \ 52.76 39.12 81.00  53.57 19.00 \ 60.10 85.19 46.43
Deep SVDD \ 0.7607  90.11 88.04 \ 83.05 84.96 81.22 6.11 18.78 \ 93.02 92.17 93.89
VAE \ 0.6507  86.19 82.46 \ 74.37 83.31 67.16 5.72 32.84 \ 90.55 87.11 94.28

AE \ 0.7801  90.75 89.01 \ 84.62 83.96 85.29 6.93 14.71 \ 93.39 93.71 93.07
DebM-VAE ‘ 0.8197  90.94 90.92 ‘ 90.50 99.29 83.14 6.40 16.85 ‘ 91.34 84.51 99.36
DebM-AE ‘ 0.8316 92.74 91.57 ‘ 88.44 84.16 93.18 7.46 6.82 \ 94.70 96.97 92.54

Besides quantitative results, we also visualize the learned o Change - o Change

latent spaces of VAE, AE, DebM-VAE, and DebM-AE.
The right two images of Fig. 9 show latent spaces of the
test data resulting from the proposed methodology (DebM-
VAE and DebM-AE) trained on the Taizhou dataset. The
learned manifolds exhibit very compact distributions for no-
change samples, which in practice means better discrimination
between change and no change categories. In contrast, the
left column of Fig. 9 shows the learned feature spaces of
VAE and AE with the same network configurations used in
DebM-VAE and DebM-AE in experiments. We can see that
distributions of changed and no-change instances severely
overlap. Furthermore, Fig. 10 shows the evolution of the
visualization of training instances on the Kunshan dataset in
the latent space over training epochs.

C. Comparison With Other Competitors

It can be seen from Tables III-VI that the unsupervised
change detection methods based on deep networks outperform
other conventional models on the four datasets, due to their
superior ability of feature learning. On the other hand, among
one-class classification methods (LOF, SVDD, OC-SVM, and
Deep SVDD), deep SVDD performs relatively well consider-
ing the four datasets together. Deep SVDD shows comparative
performance on the Kunshan and Lake Eppalock datasets
and achieves higher Kappa and mean F1 on the Taizhou
dataset compared with SVDD owing to its exploitation of
deep neural networks. Furthermore, more interestingly, the

® No change - ® No change

® Change © e Change

® No change ® No change

Fig. 9. Comparison of the learned latent spaces of test samples resulting
from VAE (top left), AE (bottom left), DebM-VAE (top right), and DebM-AE
(bottom right) trained on the Taizhou dataset. Nte that there are some overlaps
between blue and red dots due to overplotting.

one-class classifiers that use partial labeled data (i.e., labeled
no-change pixel pairs for training) perform better than most
unsupervised change detection approaches on the Kunshan
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TABLE IV
NUMERICAL RESULTS FOR THE EVALUATED MODELS ON THE LAKE EPPALOCK DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Model ‘ Kappa OA Mean F1 ‘ Change ‘ No change
| | F1score Precision Recal FAR MDR | FI1score Precision Recall
CVA ‘ 0.6099  80.77 79.95 ‘ 84.00 73.95 97.22 37.00 2.78 ‘ 75.90 95.44 63.00
PCA ‘ 0.5353  76.98 76.53 ‘ 79.78 73.34 87.47 3435 1253 ‘ 73.28 82.91 65.65
MAD ‘ 0.7850  89.19 89.15 ‘ 88.52 98.67 80.26 1.17 19.74 ‘ 89.78 82.25 98.83
IRMAD ‘ 0.7890  89.39 89.35 ‘ 88.70 99.23 80.18 0.67 19.82 ‘ 90.00 82.27 99.33
SFA ‘ 0.8096  90.50 90.48 ‘ 90.87 90.68 91.06 10.11 8.94 ‘ 90.09 90.30 89.89
DSFA ‘ 0.7086  88.00 85.43 ‘ 79.30 81.67 77.06 7.35 22.94 ‘ 91.55 90.48 92.65
KPCAMNet ‘ 0.7889  89.41 89.41 ‘ 89.18 94.99 84.05 4.79 15.95 ‘ 89.63 84.67 95.2
DSMSCN ‘ 0.6271 81.62 80.80 ‘ 84.78 74.37 98.58 36.69 1.42 ‘ 76.81 97.64 63.31
cGAN ‘ 0.5708  78.54 78.45 ‘ 77.09 72.14 82.76 24.73 17.24 ‘ 79.82 84.95 75.27
iForest ‘ 0.5274  76.66 75.90 ‘ 80.19 71.69 90.98 38.81 9.02 ‘ 71.60 86.26 61.19
EE ‘ 0.0380  50.12 36.72 ‘ 7.59 100 3.94 0 96.06 ‘ 65.84 49.08 100
LOF ‘ 0.2008 61.24 53.47 ‘ 72.49 57.40 98.32 78.81 1.68 ‘ 34.45 92.13 21.19
SVDD ‘ 04641 73.43 72.97 ‘ 76.52 70.72 83.35 37.28  16.65 ‘ 69.42 77.72 62.72
OC-SVM ‘ 0.5548  77.93 77.55 ‘ 80.48 74.41 87.63 32.54 1237 ‘ 74.61 83.47 67.46
Deep SVDD ‘ 04751  74.20 72.65 ‘ 79.17 68.16 94.41 47.63 5.59 ‘ 66.12 89.66 52.37
VAE ‘ 0.4604  72.50 70.92 ‘ 64.14 99.30 47.37 0.36 52.63 ‘ 77.69 63.67 99.64
AE ‘ 0.5245 75.84 74.95 ‘ 70.20 97.66 54.79 1.42 45.21 ‘ 79.69 66.87 98.58
DebM-VAE ‘ 0.8213  91.02 89.09 ‘ 90.60 99.29 83.30 0.64 16.70 ‘ 91.41 84.63 99.40
DebM-AE ‘ 0.8226  91.07 91.13 ‘ 90.69 99.11 83.58 0.81 16.42 ‘ 91.45 84.83 99.19

TABLE V

NUMERICAL RESULTS FOR THE EVALUATED MODELS ON THE TAIZHOU DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Model ‘ Kappa OA Mean F1 ‘ Change ‘ No change
| | F1score Precision Recal FAR MDR | FI1score Precision Recall
CVA ‘ 0.0793  65.71 53.97 ‘ 30.71 30.35 31.09 23.09 68.91 ‘ 77.22 77.52 76.91
PCA ‘ 0.8103  93.59 90.46 ‘ 85.00 99.24 74.34 0.19 25.62 ‘ 95.92 92.32 99.82
MAD ‘ 0.8179  93.67 90.88 ‘ 85.82 94.92 78.31 1.36 21.71 ‘ 95.93 93.36 98.64
IRMAD ‘ 0.8266  94.05 91.30 ‘ 86.40 97.83 77.37 0.55 22.63 ‘ 96.19 93.14 99.45
SFA ‘ 0.8245  93.77 91.21 ‘ 86.47 92.26 81.36 2.21 18.64 ‘ 95.96 94.19 97.79
DSFA ‘ 0.8369  94.12 91.84 ‘ 87.53 90.86 84.43 2.75 15.57 ‘ 96.15 95.08 97.25
KPCAMNet ‘ 0.7595  87.91 87.89 ‘ 87.37 95.51 80.52 4.09 19.48 ‘ 88.41 82.00 95.91
DSMSCN ‘ 0.6383  87.88 81.79 ‘ 71.26 84.79 61.45 3.57 38.55 ‘ 92.32 88.55 96.43
cGAN ‘ 0.6052  87.37 80.25 ‘ 68.39 70.93 66.04 7.06 33.96 ‘ 92.11 91.30 92.94
iForest ‘ 0.7501 90.05 87.46 ‘ 81.75 74.13 91.11 10.29 8.89 ‘ 93.16 96.89 89.71
EE ‘ 04116  83.29 69.06 ‘ 48.08 99.93 31.66 0.01 68.34 ‘ 90.04 81.89 99.99
LOF ‘ 0.5914  81.61 78.99 ‘ 71.57 57.52 94.69 22.63 5.31 ‘ 86.41 97.83 77.37
SVDD ‘ 0.6810  86.21 83.77 ‘ 77.47 64.50 96.95 17.27 3.05 ‘ 90.07 98.82 82.74
OC-SVM ‘ 0.2576  58.01 57.32 ‘ 51.89 36.04 92.62 53.19 7.38 ‘ 62.75 95.15 46.81
Deep SVDD ‘ 0.7640  90.55 88.15 ‘ 82.80 74.61 93.02 10.24 6.98 ‘ 93.49 97.54 89.76
VAE ‘ 0.7637  91.47 88.19 ‘ 81.95 84.91 79.19 4.55 20.81 ‘ 94.42 93.41 95.45
AE ‘ 0.8027  92.51 90.13 ‘ 85.28 82.05 88.78 6.29 11.22 ‘ 94.97 96.27 93.71
DebM-VAE ‘ 0.8055  92.42 90.26 ‘ 85.66 79.69 92.60 7.64 7.40 ‘ 94.85 97.47 92.36
DebM-AE ‘ 0.8919  95.92 94.59 ‘ 91.91 89.07 94.95 3.77 5.05 ‘ 97.27 98.33 96.23
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TABLE VI
NUMERICAL RESULTS FOR THE EVALUATED MODELS ON THE BEIRUT DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Model ‘ Kappa OA Mean F1 ‘ Change ‘ No change
| | F1 score Precision Recall FAR MDR | F1score Precision Recall
CVA ‘ 0.1468  82.36 54.40 ‘ 18.70 10.67 75.54 1746 2446 ‘ 90.10 99.19 82.54
PCA ‘ 0.0955  75.07 49.69 ‘ 13.96 7.69 75.27 2493 2473 ‘ 85.42 99.10 75.07
MAD ‘ 0.1086  79.10 51.61 ‘ 15.12 8.49 69.29 20.62  30.71 ‘ 88.09 98.94 79.38
IRMAD ‘ 0.1097  79.17 51.68 ‘ 15.23 8.55 69.67 20.57  30.33 ‘ 88.12 98.96 79.43
SFA ‘ 0.1057  72.19 49.40 ‘ 15.45 8.50 84.67 28.20  15.33 ‘ 83.36 99.34 71.80
DSFA ‘ 0.1089  81.21 52.47 ‘ 15.52 8.97 57.49 18.05 42.51 ‘ 89.43 98.42 81.95
KPCAMNet ‘ 0.2316  89.47 60.57 ‘ 26.81 16.94 64.27 9.75 35.73 ‘ 94.33 98.79 90.25
DSMSCN ‘ 0.3051  95.70 65.25 ‘ 32.72 30.85 34.84 242 65.16 ‘ 97.78 97.98 97.58
cGAN ‘ 0.1729  84.45 56.25 ‘ 21.13 12.23 77.54 15.36 2246 ‘ 91.37 99.27 84.64
iForest ‘ 0.0568  71.50 46.82 ‘ 10.59 5.82 59.07 28.14 4093 ‘ 83.04 98.35 71.86
EE ‘ 0.0104 97.15 49.82 ‘ 1.08 70.88 0.55 0.01 99.45 ‘ 98.55 97.16 99.99
LOF ‘ 0.0355  48.23 36.32 ‘ 8.78 4.62 87.17 5292  12.83 ‘ 63.86 99.20 47.08
Deep SVDD ‘ 0.2166  87.95 59.40 ‘ 25.35 15.40 71.52 11.56  28.48 ‘ 93.45 99.06 88.44
VAE ‘ 0.2003  90.04 59.14 ‘ 23.60 15.12 53.82 8.90 46.18 ‘ 94.67 98.53 91.10
AE ‘ 0.1518  85.95 55.77 ‘ 19.23 11.51 58.52 13.25 4148 ‘ 92.30 98.61 86.75
DebM-VAE ‘ 0.3578  96.22 67.89 ‘ 37.72 35.66 40.03 2.13 59.97 ‘ 98.05 98.23 97.87
DebM-AE ‘ 0.2264  88.81 60.09 ‘ 26.23 16.16 69.54 10.62  30.46 ‘ 93.95 99.01 89.38

5629716

and Beirut datasets, but they do much worse on the Lake
Eppalock and Taizhou scenes. This means that the one-class
classification models have unstable behaviors with different
datasets. In contrast, the autoencoder-based models, especially
the proposed DebM-AE, demonstrate good robustness against
different scenes and high accuracy. Table VI presents the
experimental results on the Beirut dataset, where DebM-VAE
achieves the highest Kappa and mean F1 score. It is interesting
to observe that DebM-VAE outperforms DebM-AE, and VAE
benefits more from the proposed minimum volume criterion,
e.g., increments of 0.1575% and 8.75% in Kappa and mean F1,
respectively. However, it can be seen that all the models
gain high OA but relatively low Kappa and mean F1 on the
dataset. The reasons could be 1) the dataset includes few
changed samples and is highly imbalanced and 2) bands with
lower resolutions deliver limited effective visual information.
Fig. 11 shows change detection maps obtained by the proposed
method and three representative competitors.

We also analyze the model complexity by measuring float-
ing point operations (FLOPs) and computation time. Tak-
ing the Kunshan dataset as an example, compared with
deep learning-based competitors, our method needs com-
parative FLOPs and time. Specifically, AE and VAE take
2.69¢5 and 4.04e5 FLOPs, while DebM-AE and DebM-VAE
have 2.71e5 and 4.05¢5 FLOPs, respectively. Besides, it takes
1 and 2 s per epoch to train AE and Deep SVDD, respectively,
while for DebM-AE, one epoch training requires 2 s. As to
the traditional algorithms, SVDD and IRMAD need 72.4 and
6.1 s in total, respectively, which are faster than our method.

But taking the model performance into consideration, the
computational complexity of our model is acceptable.

D. Model Transferability

In this section, we discuss the transferability of the proposed
method. Several experiments are conducted to verify the
performance of a model trained on a dataset and tested on
other unseen scenes. Since both Kunshan and Taizhou are
relevant to urban changes, here, we use these two datasets.
The experimental settings are as follows.

1) Kunshan — Taizhou: Training samples are from the
training set of the Kunshan dataset (cf. the bottom left
image in Fig. 3), and the trained model is evaluated on
the test set of the Taizhou scene (see the bottom right
image in Fig. 5). The model is marked with K — T'.

2) Taizhou — Kunshan: We train a model using the training
set of the Taizhou dataset (see the bottom left image in
Fig. 5) and test it on the test set of the Kunshan dataset
(cf. the bottom right image in Fig. 3). In this case, the
method is marked with 7 — K.

Table VII reports the experimental results. Overall, the pro-
posed method shows good transfer performance. For example,
Kappa and mean F1 of DebM-AEg_.; are 0.8522% and
92.61%, respectively, which are second to those of DebM-
AE (in Table V) but significantly better than those of other
models trained on the Taizhou dataset.

Moreover, to explore further the transferability of the pro-
posed model, we conduct experiments on the source and
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TABLE VII
EVALUATING TRANSFERABILITY OF MODELS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Model ‘ Kappa OA Mean F1 ‘ Change ‘ No change
| | F1 score Precision Recall FAR MDR | F1score Precision Recall
Kunshan — Taizhou
VAEgk 1 ‘ 0.7633  92.07 88.09 ‘ 81.19 96.69 69.97 0.77 30.03 ‘ 94.98 91.08 99.23
AEk 1 ‘ 0.8182  93.73 90.88 ‘ 85.78 96.16 77.43 1.00  22.57 ‘ 95.97 93.13 99.00
DebM-VAEk _, 1 ‘ 0.8214  93.81 91.04 ‘ 86.06 95.78 78.13 .12 21.87 ‘ 96.02 93.32 98.88
DebM-AExk 1 ‘ 0.8522  94.56 92.61 ‘ 88.81 89.41 88.21 3.38 11.79 ‘ 96.41 96.20 96.62
Taizhou — Kunshan
VAET_, K ‘ 0.6438  86.25 82.04 ‘ 73.34 86.98 63.39 4.03 36.61 ‘ 90.74 86.05 95.97
AEr_, K ‘ 0.6096  84.80 80.35 ‘ 71.00 82.35 62.40 5.68  37.60 ‘ 89.70 85.51 94.32
DebM-VAET_, ¢ ‘ 0.6273  85.93 81.11 ‘ 71.57 89.99 59.41 2.81 40.59 ‘ 90.65 84.93 97.19
DebM-AEr_, i ‘ 0.7880  91.30 89.40 ‘ 84.90 87.96 82.05 4.77 17.95 ‘ 93.89 92.58 95.23
TABLE VIII
EVALUATING PATCH- AND PIXEL-BASED AUTOENCODERS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD
Model ‘ Kappa OA Mean F1 ‘ Change ‘ No change
| | F1score Precision Recall FAR MDR | Flscore Precision Recall
DebM-AE ‘ 0.8316  92.74 91.57 ‘ 88.44 84.16 93.18 7.46 6.82 ‘ 94.70 96.97 92.54
DebM-CAE ‘ 0.8479  93.55 92.39 ‘ 89.42 87.59 91.32 5.50 8.68 ‘ 95.37 96.24 94.50
Epoch #1 Epoch #10 Epoch #100
-

Fig. 10. Evolution of the visualization of the latent space while training a DebM-AE for one-class change detection.

target datasets having different scenes (e.g., Kunshan and
Lake Eppalock). The experimental results are unsatisfactory.
We speculate that the transferability of the model is limited
by the scene consistency between two datasets, i.e., if the
source and target datasets have the same scene type (e.g.,
city in the Kunshan and Taizhou datasets), the model’s trans-
ferability is satisfactory; otherwise, the model does not work
well.

E. Taking Into Account Spatial Information

We note that it is feasible to further boost the performance
of our model by 1) taking image patches as input and
2) substituting convolutional layers for fully connected layers
in the network architecture. Specifically, we crop patches
with the original training pixels being at the center and
generate patch pairs by concatenating patches from bitemporal

images. The number of filters in each convolutional layer is
identical to that in the corresponding fully connected layer.
The experiments are conducted on the Kunshan dataset, and
Table VIII shows that the use of spatial information can boost
the change detection performance.

F. Effect of the Number of Polygon Annotations

In this section, we study the effect of the number of polygon
annotations by training networks with variant subsets. Taking
the Kunshan dataset (including 15 polygon annotations) as
an example, we train our model on six subsets, which are
produced by randomly remaining 9, 10, 11, 12, 13, and
14 polygon-level annotations, respectively. As shown in Fig. 8,
the performance of DebM-AE gradually decreases with the
decrement of the number of polygon annotations. Therefore,
as a compromise between the classification accuracy and
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human labor, the number of polygons is supposed to be no
less than 12.

VI. CONCLUSION

In this article, we introduce a network for the one-class
change detection tasks. The proposed DebM-AE learns to
simultaneously reconstruct the input pairs of no-change pix-
els and minimize the volume of the latent space enclosing
encoded representations of the training samples. By doing so,
we encourage the model to learn a compact feature space for
no-change data, which is conducive to recognizing changed
examples in the test phase. Compared with the unsupervised
change detection approaches, one-class classification models,
and regular autoencoder networks, the proposed method gains
significant improvements. Furthermore, our DebM-AE shows
very good robustness and transferability. In future, we will
extend the proposed method for change/anomaly detection in
image time series. Incorporating spatial information into the
proposed approach will also be studied, and we believe that the
resulting model would lead to better results. In addition, apply-
ing the idea of one-class change detection and the proposed
methodology to change detection in high spatial resolution
images would be another interesting topic to investigate.
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