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Abstract— Change detection is a long-standing and challenging1

problem in remote sensing. Very often, features about changes2

are difficult to model beforehand, thus making the collection3

of changed samples a challenging task. In comparison, it is4

much easier to collect numerous no-change samples. It is pos-5

sible to define a change detection approach using only easily6

available annotated no-change samples, which we henceforth call7

one-class change detection. Autoencoder networks being trained8

on no-change data are natural candidates for addressing this9

task due to their superior performance when compared with10

other one-class classification models. However, the autoencoders11

usually suffer from the problem of overgeneralization, i.e., they12

tend to generalize too well, thus risking properly reconstructing13

changed samples. In this article, we propose a novel data-14

enclosing-ball minimizing autoencoder (DebM-AE) that is trained15

with dual objectives—a reconstruction error criterion and a16

minimum volume criterion. The network learns a compact latent17

space, where encodings of no-change samples have low intraclass18

variance, which as counterpart has the identification of changed19
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instances. We conducted extensive experiments on three real- 20

world datasets. Results demonstrate advantages of the proposed 21

method over other competitors. We make our data and code pub- 22

licly available (https://gitlab.lrz.de/ai4eo/reasoning/DebM-AE; 23

https://github.com/lcmou/DebM-AE). 24

Index Terms— Autoencoder network, change detection, one- 25

class classification, remote sensing. 26

I. INTRODUCTION 27

WE LIVE in a dynamic world where things change 28

all the time. The recent advances in remote sensing 29

platforms open up new possibilities for observing dynamic 30

changes of our planet from a bird’s eye view. New images 31

are populated daily, e.g., the Landsat 8 satellite acquires more 32

than 700 scenes a day, and in the same time span Sentinel-2 33

produces over 4 Terabytes of fresh images. Hence, multi- 34

temporal data analysis is becoming increasingly important. 35

In the field of multitemporal image analysis [1], [2], change 36

detection is a long-standing research problem. It deals with 37

changes both in natural resources and in man-made structures. 38

For instance, in the former case, change detection enables 39

deforestation monitoring, disaster assessment, and crop stress 40

detection [3], [4]. In the latter one, it can aid in city monitoring 41

and planning [5], [6], [7]. 42

There are numerous methods for detecting changes in 43

remote sensing imagery. For the biggest part, they can be 44

divided into three classes, supervised, semisupervised, and 45

unsupervised ones, differing in the use of labeled data. 46

Both the supervised and semisupervised methods require 47

well-labeled samples from changed and no-change areas, and 48

the difference between them is that the latter also exploit 49

unlabeled samples to assist the labeled ones in the training 50

phase. Albeit successful, these approaches suffer from the 51

fact that in most situations, ground-truth data, particularly 52

for changed regions, are difficult to acquire. This is because 53

features about changes are often unknown or difficult to model 54

beforehand because of the variety of possible kinds of change. 55

For this reason, the unsupervised change detection models are 56

conceptually of high interest and have been widely studied 57

over the past decades [8], [9], [10], [11]. The underlying 58
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assumption of unsupervised models is that nothing is known59

about the data and task, and samples are grouped into two or60

more categories (change/multitype changes versus no change)61

by clustering or thresholding algorithms.62

To take a deep dive into this task, we observe how humans63

identify the changes in bitemporal images. A human annotator64

usually switches between the pre- and post-images repeatedly65

and tries to spot significant differences (change) from the66

background (no change). The annotator may not be aware67

of the expected changes, but has a clear understanding and68

knowledge of no change. On the other hand, information69

about changes is often hard to obtain in many applications,70

e.g., disaster management, but it is much easier to have71

information on the nature of no-change regions, and this can be72

even beforehand. This has motivated researchers to formulate73

binary change detection as a one-class classification task where74

samples of only one class, i.e., no-change, are used to train75

a model that is used to distinguish changed instances from76

no-change ones. Hereafter, we call this paradigm as one-class77

change detection.78

We find that autoencoders are natural candidates for this79

task: these models can learn no-change profiles given only80

no-change samples and identify changes as samples not81

conforming to the no-change profiles. The autoencoders are82

trained by minimizing the reconstruction error on no-change83

instances and use the reconstruction error as an indicator of84

changes, i.e., it is assumed that changed samples cannot be85

reconstructed well. However, we find that this assumption does86

not always hold, and the autoencoders often overgeneralize,87

that is, sometimes they generalize so well to closely recon-88

struct changed pixel pairs, thus in the end failing to recognize89

them as such. To address it, we propose a data-enclosing-90

ball minimizing autoencoder (DebM-AE). Specifically, in this91

article, we consider one-class change detection in multispectral92

images and a pixel-based model. In our model, an autoencoder93

is trained with dual objectives—a traditional reconstruction94

error criterion and a minimum volume criterion. The latter95

minimizes the volume of the space enclosing training sample96

pairs in the latent space of the autoencoder. The result of97

training is that the encoder learns to transform no-change98

instances to an extremely compact feature space where the99

samples have very low intraclass variance. Thus, changed pixel100

pairs can be better separated. The main contributions of this101

work are as follows. First, we explore the use of the autoen-102

coder framework for supervised one-class change detection103

tasks in which only easily available labeled no-change samples104

are needed for model training. This paradigm shows superior105

performance compared with the conventional one-class classi-106

fication algorithms and outlier detection models. Furthermore,107

we analyze the overgeneralization problem of autoencoders108

in this task. To address it, we propose a novel and effective109

autoencoder network, namely, DebM-AE, which is trained110

based on dual objectives and can aid in separating and thus111

recognizing changed pixel pairs more accurately. Second,112

we build polygonal training/test masks for four real-world113

datasets and use them to evaluate the effectiveness of the pro-114

posed network. Moreover, we conduct experiments to verify115

that our method has good transferability.116

The remainder of this article is organized as follows. 117

Section II gives a brief overview of the current methods for 118

change detection in bitemporal remote sensing images with 119

a focus on the supervised, semisupervised, and unsupervised 120

models, as well as the existing approaches for one-class 121

change detection. Section III presents our proposed DebM-AE 122

architecture. In Section IV, the datasets, evaluation metrics, 123

and competitors are introduced. Furthermore, we present the 124

numerical results and a discussion of the observed model 125

performance in Section V. Finally, Section VI concludes this 126

article. 127

II. RELATED WORK 128

In this section, we explore the state-of-the-art change detec- 129

tion methods which are divided into three categories, super- 130

vised, semisupervised, and unsupervised models, differing in 131

the use of labeled data. The one-class models are particularly 132

reviewed in Section II-A. 133

A. Supervised Change Detection 134

The development of supervised learning algorithms in the 135

field of machine learning provides insights into the supervised 136

change detection methods. Early efforts have gone into seeking 137

out conventional classifiers, to name a few, random forest [12], 138

[13], [14] and support vector machine (SVM) [15], [16]. 139

In recent years, with the rising popularity of deep learning, 140

neural networks have been applied to change detection tasks. 141

For instance, [17] uses a long short-term memory (LSTM) 142

network—a kind of recurrent neural network (RNN)—to 143

detect the changes in bitemporal multispectral images, and 144

this model shows good generalization results. Later, [18] 145

proposes a recurrent convolutional neural network (CNN) that 146

is able to significantly remove salt and pepper noise from 147

change detection maps and thus obtain better results. In [19], 148

a 2-D CNN is introduced to learn high-level features, 149

and in [20], the authors use a recurrent 3-D CNN to 150

extract spectral–spatial–temporal features for change detec- 151

tion. In [21], the authors introduce a Siamese CNN to extract 152

features of bitemporal images and use a weighted contrastive 153

loss to alleviate the influence of imbalanced data. For high spa- 154

tial resolution remote sensing images, this task can be deemed 155

as a dense (pixel-wise) prediction task and solved by the 156

semantic segmentation network architectures [22]. In [23], sev- 157

eral Siamese U-Nets are designed for semantic change detec- 158

tion with very high-resolution images. The authors of [24] 159

use an improved UNet++ for this task. To tackle pseudo 160

changes caused by seasonal transitions in change detection 161

tasks, [25] proposes a metric-learning-based generative adver- 162

sarial network (GAN), termed MeGAN, to learn seasonal 163

invariant feature representations. Furthermore, some modern 164

network architectures and techniques, e.g., CapsNet [26], [27], 165

self-supervised learning [28], [29], attention mechanism [30], 166

and Transformer [31], also shed light on this problem. For 167

example, in [26], the authors use the convolutional capsule 168

networks to extract vector-based features of bitemporal images 169

and then produce binary change maps by computing their 170

cosine similarities and differences. [31] tokenizes feature maps 171
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learned by a CNN backbone and feed them into Transformer172

layers for encoding contexts in space-time. Afterward, tokens173

are rearranged as feature maps, of which differences are174

calculated by subtraction for predicting final change maps.175

Although successful, these models require massive training176

samples to provide sufficient supervision information, which177

restricts their application scenarios.178

It is noteworthy that in change detection, supervision can179

be in the form of either labeled training pixels scattered180

across the target scene [18] or labeled training scenes that are181

spatially disjoint with the target one [23]. Our work belongs182

to the first category but uses polygon annotations, which is183

relevant in scenarios where a human annotator can quickly184

label some data, but not the entire target scene. For polygon-185

level annotations, pixels within each polygon are assigned the186

same label (change or no change). In addition, we also show187

the performance of the proposed method using the second188

category of labeling (see Section V-D).189

One-class change detection is a special case of super-190

vised learning algorithms, as only no-change samples are191

used. In [32], the authors make use of a one-class SVM192

(OC-SVM) for change detection. The authors of [33] propose193

a semisupervised OC-SVM and apply it to one-class change194

detection. [34] exploits a cost-sensitive SVM for the same195

task and uses an entire solution path algorithm to facilitate196

and accelerate the parameter selection of the cost-sensitive197

SVM. From bitemporal images to long image time series,198

in [35], the authors propose a one-class method for change199

detection in image time series, where no-change image time200

series is used to train an LSTM network that is subse-201

quently applied to detect the changes from target image time202

series. Moreover, when the number of changed instances203

is smaller than that of no-change samples in a scene, the204

outlier detection methods? [36], [37], [38], [39], [40] can be205

applied into the one-class change detection tasks. We also206

evaluate several outlier detection approaches in our case207

(see Sections IV and V).208

B. Semisupervised Change Detection209

Semisupervised learning allows making use of a huge210

amount of unlabeled data and few labeled samples, thus211

reducing the workload of data annotation to some extent.212

There have been several works in this direction. For example,213

in [41], a Gaussian process algorithm is introduced for semi-214

supervised change detection. [42] presents a metric learning215

method with Laplacian regularization by which labels can216

be propagated from labeled samples to unlabeled instances.217

Most recently, the authors of [43] propose a semisupervised218

change detection approach, where bitemporal images are first219

encoded as a graph via a multiscale parcel segmentation220

algorithm, and a graph convolutional network (GCN) is used221

for semisupervised node classification on this graph. In [44],222

the authors propose to extract multiscale features and learn223

discriminant metrics by highlighting the contribution of simple224

training samples. As a popular architecture in semisupervised225

change detection, GAN is used to generate more training226

samples [45] and enhance the feature distribution consistency227

of final predictions [46].228

C. Unsupervised Change Detection 229

Most change detection models are unsupervised, as collect- 230

ing labeled data is difficult. In the literature, a widely used 231

methodology is based on image algebra, and the classical 232

models are change vector analysis (CVA) [8], [9] and its vari- 233

ations [10], [11]. Furthermore, some image-transformation- 234

based unsupervised change detection approaches have been 235

proposed to learn new feature representations from the original 236

data, to highlight changes while suppressing no changes in 237

the new feature spaces. For instance, [47] and [48] apply 238

principal component analysis (PCA)—a well-known subspace 239

learning algorithm—on stacked images and difference images, 240

respectively, for unsupervised change detection tasks. In [49], 241

the authors introduce a multivariate statistical transformation, 242

termed multivariate alteration detection (MAD), to identify 243

land cover changes in satellite images, and this method is 244

invariant to the linear scaling of the input data. The authors 245

of [50] propose to make use of slow feature analysis (SFA), 246

which is capable of learning slowly varying features from a 247

time series, in change detection. By doing so, in the learned 248

feature space, differences among no-change pixel pairs are 249

suppressed so that changed instances stand out more clearly. 250

Later, deep SFA, a combination of networks and SFA, is pro- 251

posed in [51]. In [52], self-supervised multitemporal segmen- 252

tation is used for unsupervised change detection. In addition, 253

some networks, e.g., autoencoders [53], [54], [55], [56], [57], 254

deep belief networks (DBNs) [58], and CNNs [19], [20], 255

[59], [60], [61], [62], are also used to learn better feature 256

representations in an unsupervised fashion for unsupervised 257

change detection. The authors of [63] incorporate deep neural 258

networks and low-rank decomposition for predicting saliency 259

maps where high values indicate large change probabilities. 260

Another important branch in unsupervised change detection 261

is heterogeneous change detection, also known as multimodal 262

change detection, which aims to detect the changes between 263

heterogeneous images. In [64], the authors propose to build up 264

an observation field from paired pixels in bitemporal heteroge- 265

neous images for modeling features that are invariant to diverse 266

imaging modalities. In [65], the authors train a stacked sparse 267

autoencoder for heterogeneous change detection. [66] mea- 268

sures the similarity of affinity matrices computed from bitem- 269

poral heterogeneous images to identify pixels being likely to 270

be unchanged, which are then used as pseudo-training data to 271

learn transformations between different modalities. Following 272

this work, [67] introduces vertex degrees and cycle consistency 273

in learning such transformations. Aiming to project features 274

of multimodal images into a shared space, [68] proposes 275

an iterative coupled dictionary learning model to establish 276

coupled dictionaries for multimodal images, and [69] takes 277

variational autoencoder (VAE) as the backbone and builds 278

coupled GANs for heterogenous change detection. 279

III. METHODOLOGY 280

A. Autoencoders in One-Class Change Detection and Their 281

Limitations 282

A conventional autoencoder usually includes two major 283

components: an encoder and a decoder. The former attempts 284
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Fig. 1. Visualization of the latent space of an autoencoder for one-class
change detection, obtained by projecting to the first two principal components.
Blue and red points indicate no-change and changed samples in the test set,
respectively. As can be seen, a considerable number of changed samples share
the same feature space with no-change ones, demonstrating the overgeneral-
ization problem of the autoencoder.

to represent the input in a latent space, and the latter learns to285

reconstruct the input from the encoded representation. Let us286

assume that we have pre- and post-change images acquired287

over the same geographical area. We stack them together288

and use them as the input to an autoencoder. Note that only289

pairs of no-change pixels are used in the training phase.290

Formally, let X be the domain of labeled no-change samples291

and Z represent the domain of encodings. Thus, the encoder292

and the decoder can be denoted as f (·) : X → Z and293

g(·) : Z → X , respectively. Given a no-change pixel pair294

xi ∈ X , we have295

zi = f (xi ; �e) (1)296

x̂i = g(zi ; �d) (2)297

where z ∈ Z , �e and �d are the parameters of the298

encoder and the decoder, respectively, and x̂i denotes the299

reconstruction. Training the autoencoder means optimizing300

the parameters {�e,�d} to reduce the average loss on the301

training samples. In the context of one-class change detection,302

an autoencoder makes use of the reconstruction error as a303

change score. This method assumes that in the inference phase,304

no-change samples can be reconstructed more accurately than305

changed ones.306

In theory, the autoencoder architecture is an ideal model307

for the one-class change detection tasks. However, in real-308

world scenarios, we observe that it often suffers from the309

problem of overgeneralization, i.e., sometimes an autoencoder310

trained on no-change examples generalizes so well that it311

is able to reconstruct some changed instances perfectly in312

the inference phase. Fig. 1 shows an example visualization313

of the learned latent space of an autoencoder for one-class314

change detection. This is obtained by projecting to the first two315

principal components, and red and blue indicate change and no316

change, respectively. As can be seen, a considerable number of 317

changed samples share the same feature space with no-change 318

instances, demonstrating the overgeneralization problem of the 319

autoencoder. There are two possible reasons: 1) some changed 320

pixel pairs share common components (e.g., spectral bands) 321

with no-change ones and 2) the encodings of changed exam- 322

ples have high intraclass variance, which leads to difficulty in 323

distinguishing changes from no changes. 324

B. Data-Enclosing-Ball Minimizing Autoencoder 325

Our insight is that reducing the intraclass distance of 326

training data (i.e., labeled no-change samples) in the latent 327

space can help reduce the overgeneralization problem of the 328

autoencoder in the one-class change detection tasks. In this 329

work, a new autoencoder architecture is proposed with dual 330

objectives—a traditional reconstruction error criterion and a 331

minimum volume criterion that minimizes the volume of 332

the latent space enclosing encoded representations of train- 333

ing samples. Fig. 2 shows the overview architecture of the 334

proposed DebM-AE. 335

1) Reconstruction Error Criterion: In this article, we make 336

use of the �2-norm-based mean square error (MSE), that is, 337

Lrec(�e,�d) =
N∑

i=1

�x i − x̂i�2
2 (3) 338

as the reconstruction loss, where N is the number of training 339

samples. The proposed model updates the encoder and the 340

decoder to minimize the reconstruction errors of the inputs. 341

2) Minimum Volume Criterion: Our aim is to jointly learn 342

the encoder parameters �e together with minimizing the 343

volume of the enclosing space of training samples in the latent 344

space Z . Here, we make use of a hypersphere as the enclosing 345

space, as it is simple, effective, and easy to implement. 346

Let c and R be the center and radius of the hypersphere, 347

respectively. Thus, the minimum volume criterion can be 348

defined as follows: 349

Lmv(R, c,�e) = R2 + 1

μN

N∑

i=1

max{0, �zi − c�2 − R2}. 350

(4) 351

Minimizing the first term of this objective, R2, minimizes 352

the volume of the hypersphere. The minimization of the 353

second term is a penalty that encodings outside the sphere 354

(�zi − c�2 > R2) get penalized. This makes the hypersphere 355

include as much training data as possible. The hyperparameter 356

μ ∈ (0, 1] controls the trade-off between the volume and 357

boundary violations. By optimizing (4), the encoder learns to 358

closely map no-change pixel pairs to the hypersphere center c. 359

Through this, we can learn a compact latent space for no 360

change. Note that the more compact the latent space, the 361

better the robustness and transferability of our model. After 362

sufficient training, changed samples can be better separated, 363

as they are supposed to be further away from c or outside the 364

sphere. 365

Furthermore, we consider a special case where the hyper- 366

sphere becomes a point (R = 0). In this case, (4) can be 367
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Fig. 2. Architecture of a DebM-AE. The top row shows a standard autoencoder that reconstructs a no-change pixel pair xi from a latent encoding zi based on
the reconstruction error criterion. The bottom row shows our minimum volume criterion that minimizes the volume of the space enclosing training examples
in the latent space. In the inference phase, a sample whose reconstruction loss is greater than a threshold is predicted as a changed instance.

simplified and rewritten as follows:368

Lmv = 1

N

N∑

i=1

�zi − c�2. (5)369

i.e., the minimum volume criterion is converted into a370

quadratic loss which penalizes the distance of each encoded371

representation to the hypersphere center.372

C. Learning and Inference373

We jointly optimize the parameters of the proposed network374

{�e,�d , R, c} in an end-to-end fashion by making use of the375

following loss function:376

L = Lrec + λLmv (6)377

where λ is a hyperparameter to introduce a weight on the min-378

imum volume criterion and can model the relative importance379

of the two criteria.380

In the inference phase, we use the trained network to detect381

changes by determining how well the network can reconstruct382

the input pixel pairs. More specifically, we383

1) calculate MSE loss on training samples and obtain the384

mean (mean) and standard deviation (std) of loss values;385

2) take mean + 2 ∗ std as the threshold [70], [71], [72];386

3) predict a sample whose reconstruction loss is greater387

than the threshold as a changed instance.388

IV. DATASET AND EXPERIMENTAL SETUP389

A. Data Description390

We evaluate the proposed network on three datasets. All of391

them are acquired by the Landsat Enhanced Thematic Mapper392

Plus (ETM+) sensor onboard the Landsat satellite. Each image393

in the datasets has a spatial resolution of 30 m/pixel and six394

spectral bands. They are preprocessed (e.g., coregistration and395

calibration).396

1) Kunshan Data: The first dataset consists of two images397

captured in March 2000 and February 2003, respectively, and398

covers the city of Kunshan, China. It is with a WGS-84399

projection and a coordinate range of 32◦26�09N–32◦32�28N,400

119◦50�32E–119◦58�24E. The spatial size of the two images401

is 800 × 800 pixels. The main types of changes in this dataset402

Fig. 3. (Top Row) Bitemporal images in the Kunshan dataset. (Bottom
Row) Polygon-level training (left) and test (right) set maps where blue and
red pixels indicate no-change and changed pixel pairs, respectively.

involve city expansion and farmland changes. Fig. 3 shows the 403

two images as well as training and test set maps. 404

2) Lake Eppalock Data: The second dataset covers the Lake 405

Eppalock in North Central Victoria, Australia. The bitemporal 406

images of the dataset are captured in February 1991 and 407

March 2009 with a coordinate range of 36◦49�10S–37◦00�52S, 408

144◦27�52E–144◦37�35E. The spatial size of both the images 409

is 602 × 631 pixels. Several types of changes in natural 410

resources, e.g., water, are presented in this dataset. Fig. 4 411

shows the two images, a training set map and a test set map 412

for evaluating the change detection methods. 413

3) Taizhou Data: The third dataset (cf. Fig. 5) includes 414

two preprocessed images covering the city of Taizhou, China. 415

The two images are acquired in March 2000 and February 416

2003 with a WGS-84 projection and a coordinate range of 417

31◦14�56N–31◦27�39N, 120◦02�24E–121◦07�45E, and each of 418
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TABLE I

NUMBERS OF TRAINING AND TEST SAMPLES IN THE KUNSHAN, LAKE EPPALOCK, TAIZHOU, AND BEIRUT DATASETS

Fig. 4. (Top Row) Bitemporal images in the Lake Eppalock dataset. (Bottom
Row) Polygon-level training (left) and test (right) set maps where blue and
red pixels indicate no-change and changed pixel pairs, respectively.

them has 400 × 400 pixels. The main changes shown in this419

dataset are city expansion, changes in water bodies, and soil420

changes.421

4) Beirut Data: The forth dataset (see Fig. 6) is repro-422

duced from the ONERA Satellite Change Detection (OSCD)423

dataset [73]. To accord with other datasets, we select bitem-424

poral images of one city, Beirut, which is very challeng-425

ing due to its large scale and various land covers. Specifi-426

cally, the images were collected from Sentinel-2 satellites in427

August 2015 and October 2017, and all 13 bands are avail-428

able, leading to variant spatial resolutions (10–60 m/pixel).429

Images of lower resolutions are upsampled to ensure that430

image sizes with respect to diverse bands are identical, i.e.,431

1070 × 1180 pixels. In the Beirut dataset, all the pixels are432

automatically classified into change or no change by resorting433

to OpenStreetMap data, and thus, changes mainly occur in434

buildings and roads.435

Table I shows the numbers of training and test instances in436

the three datasets.437

Fig. 5. (Top Row) Bitemporal images in the Taizhou dataset. (Bottom Row)
Polygon-level training (left) and test (right) set maps where blue and red
pixels indicate no-change and changed pixel pairs, respectively.

B. Implementation 438

As to the implementation, the encoder consists of two fully 439

connected layers with 128 and 512 units, respectively, and 440

yields a 512-D latent representation zi . The decoder recon- 441

structs x̂i via two fully connected layers, and the numbers 442

of their units are 128 and C . Here, C denotes the number 443

of channels of the input pixel pairs. The outputs of the first 444

three layers are activated with rectified linear units (ReLUs), 445

while the last layer is linearly activated. Table II shows 446

the architecture of the used autoencoder. c is defined as 447

a 512-D learnable vector and initialized with values sampled 448

from a normal distribution in the training phase, and the initial 449

R is set to 0. All the weights of the fully connected layers are 450

initialized with a Glorot uniform initializer. Besides, we set μ 451

as 0.01 empirically, and λ is set as 1. The learning rate 452

is fixed as 1e − 4, and the size of minibatches is 32. The 453

networks are implemented with TensorFlow and trained on one 454

NVIDIA Tesla P100 16-GB GPU. All the network weights are 455

trainable and optimized by Nestrov Adam [74] using β1 = 0.9, 456

β2 = 0.999, and � = 1e − 8 as recommended. 457



MOU et al.: DETECTING CHANGES BY LEARNING NO CHANGES: DebM-AEs 5629716

Fig. 6. (Top Row) Bitemporal images in the Beirut dataset. (Bottom Row)
Polygon-level training (left) and test (right) set maps where blue and red
pixels indicate no-change and changed pixel pairs, respectively.

TABLE II

ARCHITECTURE OF THE AUTOENCODER

C. Evaluation Metrics and Competitors458

To quantitatively evaluate the performance of the proposed459

one-class change detection model and other competitors,460

we make use of the following metrics.461

1) Kappa Coefficient: Kappa is a statistical measurement462

to measure the agreement between a predicted change463

detection map and the ground truth. In general, it is464

thought to be a more robust indicator than a simple465

percentage agreement calculation, as the possibility of466

a random agreement is taken into account. Note that467

several works in remote sensing point out issues with468

using Kappa coefficient as a performance metric [75],469

[76], [77], [78]. Since it is widely used in the change470

detection tasks, in this article, we still make use of it as471

one of the metrics.472

2) Overall accuracy (OA): This metric indicates the number473

of samples that are correctly identified, divided by the474

number of test instances.475

3) Precision: This index calculates the ability of a model476

to not label a true negative observation as positive.477

4) Recall: Recall, a.k.a., sensitivity, calculates the capabil- 478

ity of a model to find positive observations in the test 479

set. 480

5) F1 score: We use F1 score to compare any two models. 481

It is difficult to compare two models with low precision 482

and high recall or vice versa. F1 score can help measure 483

recall and precision at the same time. It exploits har- 484

monic mean in place of arithmetic mean by punishing 485

extreme values more. 486

6) False alarm rate (FAR): FAR, also known as false pos- 487

itive ratio, indicates the probability of wrongly detected 488

negatives, e.g., no-change pixels in our case. 489

7) Missed detection rate (MDR): MDR measures the 490

probability that a model fails to infer true positive 491

observations. 492

Note that we compute F1 score, precision, and recall for 493

both change and no change classes. 494

Considering that the proposed method is for one-class 495

change detection, we take the one-class classification algo- 496

rithms as the main competing methods, to evaluate the effec- 497

tiveness of our approach. To verify the benefit of using 498

labeled no-change samples, we also include unsupervised 499

change detection models in comparisons. Besides, given that 500

the outlier detection approaches can be applied to the one-class 501

change detection tasks, we compare our network with some 502

outlier detection algorithms. All the methods included in 503

experiments are summarized as follows. 504

1) CVA [9], a classical image-algebra-based unsupervised 505

model for change detection in multi and hyperspectral 506

images. 507

2) PCA [48], [79], a transformation-based unsupervised 508

approach having a fast computing speed. 509

3) MAD [49], a classical image-transformation-based unsu- 510

pervised change detection method.1 511

4) IRMAD [80], iteratively reweighted MAD, which is an 512

extension of MAD by introducing an iterative scheme.2 513

5) SFA [50], an SFA-based unsupervised change detection 514

method.3 515

6) DSFA [51], a network based on SFA for unsupervised 516

change detection.4 517

7) KPCAMNet [81], a Siamese deep network built on 518

weight-shared kernel PCA convolutions. The input of 519

each branch is an image patch, and the outputs are 520

clustered into change and no change in an unsuper- 521

vised manner. Note that compared with other com- 522

peting methods, this model uses spatial information 523

(patches).5 524

8) DSMSCN [82], a Siamese multiscale convolutional net- 525

work for change detection. Following the setting in [82], 526

we use CAV to generate pseudo labels.6 527

1http://www.imm.dtu.dk/~alan/software.html
2http://www.imm.dtu.dk/~alan/software.html
3https://github.com/I-Hope-Peace/ChangeDetectionRepository/tree/master/

Methodology/Traditional
4https://github.com/rulixiang/DSFANet
5https://github.com/I-Hope-Peace/KPCAMNet
6https://github.com/I-Hope-Peace/DSMSCN
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9) cGAN [83], a conditional adversarial network for unsu-528

pervised change detection.7529

10) iForest [36], isolation forest, is an algorithm for outlier530

detection. In our case, it builds an ensemble of isolation531

trees for a given dataset, and then changes are the532

samples that have shorter average path lengths on the533

trees.8534

11) EE [37], elliptic envelope, is an outlier detection model535

that fits a robust covariance estimate to the data and thus536

fits an ellipse to central data samples.9537

12) LOF [38], local outlier factor, a density-based algorithm538

to identify outliers/novelties in a dataset. It can be used539

in a dataset, which has a mixture of data distributions,540

and is applicable to our one-class change detection541

tasks. LOF can be used as both an unsupervised outlier542

detection model and a one-class classifier, and in our543

experiments, we choose the latter.10
544

13) SVDD [84], support vector data description, a one-545

class classification model trying to find the smallest546

hypersphere that contains all no-change samples from547

the training set.11
548

14) OC-SVM [15], a one-class SVM that separates549

no-change instances from changed ones by finding a550

hyperplane of maximal distance from the origin.12
551

15) Deep SVDD [85], a network using the SVDD loss.552

We make the structure of the used Deep SVDD model553

consistent with that of the encoder of our DebM-AE for554

a fair comparison.13
555

16) VAE [86], VAE that imposes a probabilistic distribu-556

tion, e.g., Gaussian, on the latent space and penalizes557

the difference between the prior and posterior using558

Kullback–Leibler divergence. The configuration of the559

used VAE is the same as that of our DebM-AE described560

in Section IV-B. Note that zmean and zstd are separate561

fully connected layers.562

17) AE, an autoencoder whose configuration is the same as563

above.564

18) DebM-VAE, the proposed network implemented565

on VAE.566

19) DebM-AE, the proposed network implemented on AE.567

V. RESULTS568

In this section, the hyperparameters are evaluated in569

Section V-A, and the effectiveness of the minimum volume570

criterion is analyzed in Section V-B. Afterward, we com-571

pare our model with the aforementioned competitors in572

Section V-C, and Section V-D validates the transferability of573

7https://github.com/llu025/Heterogeneous_CD/tree/master/Code-
Aligned_Autoencoders

8https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
IsolationForest.html#sklearn.ensemble.IsolationForest

9https://scikit-learn.org/stable/modules/generated/sklearn.covariance.
EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope

10https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor

11https://ww2.mathworks.cn/matlabcentral/fileexchange/69296-support-
vector-data-description-svdd

12https://www.csie.ntu.edu.tw/~cjlin/libsvm/
13https://github.com/lukasruff/Deep-SVDD-PyTorch

Fig. 7. Evaluation of hyperparameters μ and λ. The highest Kappa (0.8316)
is achieved when μ and λ are set to 0.01 and 1, respectively.

Fig. 8. Effect of the number of labeled polygons in the training set.

the proposed model. Section V-E explores the feasibility of 574

integrating spatial information into our model, and Section V-F 575

shows the effect of the number of polygon annotations. 576

A. Evaluation of Hyperparameters 577

We evaluate the following hyperparameters: μ in (4) and λ 578

in (6). The former is a hyperparameter that controls the rela- 579

tive importance of the volume of the data-enclosing-ball and 580

boundary violations. It actually allows us to control the ratio 581

of outliers in our model during the training phase. The latter, 582

λ, is a trade-off hyperparameter between the two objectives. 583

Fig. 7 shows that the Kappa coefficient increases initially as μ 584

becomes larger, but slightly decreases after μ = 0.01, and λ of 585

large values can lead to a decrease in the network performance. 586

In our experiments, we use μ = 0.01 and λ = 1. 587

B. Ablation Study on the Minimum Volume Criterion 588

We report the numerical results in Tables III–VI. The 589

observed performance increase from VAE/AE to DebM- 590

VAE/DebM-AE is a central point of our article. Take AE 591

and DebM-AE as an example. The increases in Kappa are 592

0.0515, 0.2981, 0.0892, and 0.0727 on the Kunshan, Lake 593

Eppalock, Taizhou, and Beirut datasets, respectively, which 594

represents a significant gain. The fact that DebM-VAE/DebM- 595

AE outperforms VAE/AE can be attributed to learning a more 596

compact data-enclosing latent space for no-change pixel pairs. 597
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TABLE III

NUMERICAL RESULTS FOR THE EVALUATED MODELS ON THE KUNSHAN DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Besides quantitative results, we also visualize the learned598

latent spaces of VAE, AE, DebM-VAE, and DebM-AE.599

The right two images of Fig. 9 show latent spaces of the600

test data resulting from the proposed methodology (DebM-601

VAE and DebM-AE) trained on the Taizhou dataset. The602

learned manifolds exhibit very compact distributions for no-603

change samples, which in practice means better discrimination604

between change and no change categories. In contrast, the605

left column of Fig. 9 shows the learned feature spaces of606

VAE and AE with the same network configurations used in607

DebM-VAE and DebM-AE in experiments. We can see that608

distributions of changed and no-change instances severely609

overlap. Furthermore, Fig. 10 shows the evolution of the610

visualization of training instances on the Kunshan dataset in611

the latent space over training epochs.612

C. Comparison With Other Competitors613

It can be seen from Tables III–VI that the unsupervised614

change detection methods based on deep networks outperform615

other conventional models on the four datasets, due to their616

superior ability of feature learning. On the other hand, among617

one-class classification methods (LOF, SVDD, OC-SVM, and618

Deep SVDD), deep SVDD performs relatively well consider-619

ing the four datasets together. Deep SVDD shows comparative620

performance on the Kunshan and Lake Eppalock datasets621

and achieves higher Kappa and mean F1 on the Taizhou622

dataset compared with SVDD owing to its exploitation of623

deep neural networks. Furthermore, more interestingly, the624

Fig. 9. Comparison of the learned latent spaces of test samples resulting
from VAE (top left), AE (bottom left), DebM-VAE (top right), and DebM-AE
(bottom right) trained on the Taizhou dataset. Nte that there are some overlaps
between blue and red dots due to overplotting.

one-class classifiers that use partial labeled data (i.e., labeled 625

no-change pixel pairs for training) perform better than most 626

unsupervised change detection approaches on the Kunshan 627
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TABLE IV

NUMERICAL RESULTS FOR THE EVALUATED MODELS ON THE LAKE EPPALOCK DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE V

NUMERICAL RESULTS FOR THE EVALUATED MODELS ON THE TAIZHOU DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD
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TABLE VI

NUMERICAL RESULTS FOR THE EVALUATED MODELS ON THE BEIRUT DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

and Beirut datasets, but they do much worse on the Lake628

Eppalock and Taizhou scenes. This means that the one-class629

classification models have unstable behaviors with different630

datasets. In contrast, the autoencoder-based models, especially631

the proposed DebM-AE, demonstrate good robustness against632

different scenes and high accuracy. Table VI presents the633

experimental results on the Beirut dataset, where DebM-VAE634

achieves the highest Kappa and mean F1 score. It is interesting635

to observe that DebM-VAE outperforms DebM-AE, and VAE636

benefits more from the proposed minimum volume criterion,637

e.g., increments of 0.1575% and 8.75% in Kappa and mean F1,638

respectively. However, it can be seen that all the models639

gain high OA but relatively low Kappa and mean F1 on the640

dataset. The reasons could be 1) the dataset includes few641

changed samples and is highly imbalanced and 2) bands with642

lower resolutions deliver limited effective visual information.643

Fig. 11 shows change detection maps obtained by the proposed644

method and three representative competitors.645

We also analyze the model complexity by measuring float-646

ing point operations (FLOPs) and computation time. Tak-647

ing the Kunshan dataset as an example, compared with648

deep learning-based competitors, our method needs com-649

parative FLOPs and time. Specifically, AE and VAE take650

2.69e5 and 4.04e5 FLOPs, while DebM-AE and DebM-VAE651

have 2.71e5 and 4.05e5 FLOPs, respectively. Besides, it takes652

1 and 2 s per epoch to train AE and Deep SVDD, respectively,653

while for DebM-AE, one epoch training requires 2 s. As to654

the traditional algorithms, SVDD and IRMAD need 72.4 and655

6.1 s in total, respectively, which are faster than our method.656

But taking the model performance into consideration, the 657

computational complexity of our model is acceptable. 658

D. Model Transferability 659

In this section, we discuss the transferability of the proposed 660

method. Several experiments are conducted to verify the 661

performance of a model trained on a dataset and tested on 662

other unseen scenes. Since both Kunshan and Taizhou are 663

relevant to urban changes, here, we use these two datasets. 664

The experimental settings are as follows. 665

1) Kunshan → Taizhou: Training samples are from the 666

training set of the Kunshan dataset (cf. the bottom left 667

image in Fig. 3), and the trained model is evaluated on 668

the test set of the Taizhou scene (see the bottom right 669

image in Fig. 5). The model is marked with K → T . 670

2) Taizhou → Kunshan: We train a model using the training 671

set of the Taizhou dataset (see the bottom left image in 672

Fig. 5) and test it on the test set of the Kunshan dataset 673

(cf. the bottom right image in Fig. 3). In this case, the 674

method is marked with T → K . 675

Table VII reports the experimental results. Overall, the pro- 676

posed method shows good transfer performance. For example, 677

Kappa and mean F1 of DebM-AEK→T are 0.8522% and 678

92.61%, respectively, which are second to those of DebM- 679

AE (in Table V) but significantly better than those of other 680

models trained on the Taizhou dataset. 681

Moreover, to explore further the transferability of the pro- 682

posed model, we conduct experiments on the source and 683
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TABLE VII

EVALUATING TRANSFERABILITY OF MODELS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE VIII

EVALUATING PATCH- AND PIXEL-BASED AUTOENCODERS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 10. Evolution of the visualization of the latent space while training a DebM-AE for one-class change detection.

target datasets having different scenes (e.g., Kunshan and684

Lake Eppalock). The experimental results are unsatisfactory.685

We speculate that the transferability of the model is limited686

by the scene consistency between two datasets, i.e., if the687

source and target datasets have the same scene type (e.g.,688

city in the Kunshan and Taizhou datasets), the model’s trans-689

ferability is satisfactory; otherwise, the model does not work690

well.691

E. Taking Into Account Spatial Information692

We note that it is feasible to further boost the performance693

of our model by 1) taking image patches as input and694

2) substituting convolutional layers for fully connected layers695

in the network architecture. Specifically, we crop patches696

with the original training pixels being at the center and697

generate patch pairs by concatenating patches from bitemporal698

images. The number of filters in each convolutional layer is 699

identical to that in the corresponding fully connected layer. 700

The experiments are conducted on the Kunshan dataset, and 701

Table VIII shows that the use of spatial information can boost 702

the change detection performance. 703

F. Effect of the Number of Polygon Annotations 704

In this section, we study the effect of the number of polygon 705

annotations by training networks with variant subsets. Taking 706

the Kunshan dataset (including 15 polygon annotations) as 707

an example, we train our model on six subsets, which are 708

produced by randomly remaining 9, 10, 11, 12, 13, and 709

14 polygon-level annotations, respectively. As shown in Fig. 8, 710

the performance of DebM-AE gradually decreases with the 711

decrement of the number of polygon annotations. Therefore, 712

as a compromise between the classification accuracy and 713



MOU et al.: DETECTING CHANGES BY LEARNING NO CHANGES: DebM-AEs 5629716

Fig. 11. Change detection maps obtained by our DebM-AE and five representative competitors—IRMAD, KPCAMNet, iForest, Deep SVDD, and AE. The
first column shows red–cyan color composites of bitemporal images of the three datasets, where red is for T1 image and cyan for is T2 image. Best viewed
zoomed in color.

human labor, the number of polygons is supposed to be no714

less than 12.715

VI. CONCLUSION716

In this article, we introduce a network for the one-class717

change detection tasks. The proposed DebM-AE learns to718

simultaneously reconstruct the input pairs of no-change pix-719

els and minimize the volume of the latent space enclosing720

encoded representations of the training samples. By doing so,721

we encourage the model to learn a compact feature space for722

no-change data, which is conducive to recognizing changed723

examples in the test phase. Compared with the unsupervised724

change detection approaches, one-class classification models,725

and regular autoencoder networks, the proposed method gains726

significant improvements. Furthermore, our DebM-AE shows727

very good robustness and transferability. In future, we will728

extend the proposed method for change/anomaly detection in729

image time series. Incorporating spatial information into the730

proposed approach will also be studied, and we believe that the731

resulting model would lead to better results. In addition, apply-732

ing the idea of one-class change detection and the proposed733

methodology to change detection in high spatial resolution734

images would be another interesting topic to investigate.735
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