Mou, LiChao und Hua, Yuansheng und Saha, Sudipan und Bovolo, Francesca und Bruzzone, Lorenzo und Zhu, Xiao Xiang (2022) Detecting Changes by Learning No Changes: Data-Enclosing-Ball Minimizing Autoencoders for One-Class Change Detection in Multispectral Imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 5629716. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3200985. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
20MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9870684
Kurzfassung
Change detection is a long-standing and challenging problem in remote sensing. Very often, features about changes are difficult to model beforehand, thus making the collection of changed samples a challenging task. In comparison, it is much easier to collect numerous no-change samples. It is possible to define a change detection approach using only easily available annotated no-change samples, which we henceforth call one-class change detection. Autoencoder networks being trained on no-change data are natural candidates for addressing this task due to their superior performance when compared with other one-class classification models. However, the autoencoders usually suffer from the problem of overgeneralization, i.e., they tend to generalize too well, thus risking properly reconstructing changed samples. In this article, we propose a novel data-enclosing-ball minimizing autoencoder (DebM-AE) that is trained with dual objectives—a reconstruction error criterion and a minimum volume criterion. The network learns a compact latent space, where encodings of no-change samples have low intraclass variance, which as counterpart has the identification of changed instances. We conducted extensive experiments on three real-world datasets. Results demonstrate advantages of the proposed method over other competitors. We make our data and code publicly available ( https://gitlab.lrz.de/ai4eo/reasoning/DebM-AE; https://github.com/lcmou/DebM-AE ).
elib-URL des Eintrags: | https://elib.dlr.de/192677/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Detecting Changes by Learning No Changes: Data-Enclosing-Ball Minimizing Autoencoders for One-Class Change Detection in Multispectral Imagery | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | August 2022 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 60 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2022.3200985 | ||||||||||||||||||||||||||||
Seitenbereich: | Seite 5629716 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Autoencoder network, change detection, one-class classification, remote sensing | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||||||
Hinterlegt am: | 20 Dez 2022 10:06 | ||||||||||||||||||||||||||||
Letzte Änderung: | 20 Dez 2022 10:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags