Huang, Shengyi and Dossa, Rousslan Fernand Julien and Raffin, Antonin and Kanervisto, Anssi and Wang, Weixun (2022) The 37 Implementation Details of Proximal Policy Optimization. In: The ICLR Blog Track 2023. ICLR 2022, Virtual.
Full text not available from this repository.
Official URL: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
Abstract
Proximal policy optimization (PPO) has become one of the most popular deep reinforcement learning (DRL) algorithms. Yet, reproducing the PPO's results has been challenging in the community. While recent works conducted ablation studies to provide insight on PPO's implementation details, these works are not structured as tutorials and only focus on details concerning robotics tasks. As a result, reproducing PPO from scratch can become a daunting experience. Instead of introducing additional improvements, or doing further ablation studies, this blog post takes a step back and focuses on delivering a thorough reproduction of PPO in all accounts, as well as aggregating, documenting, and cataloging its most salient implementation details. This blog post also points out software engineering challenges in PPO and further efficiency improvement via the accelerated vectorized environments. With these, we believe this blog post will help people understand PPO faster and better, facilitating customization and research upon this versatile RL algorithm.
Item URL in elib: | https://elib.dlr.de/191986/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Other) | ||||||||||||||||||||||||
Title: | The 37 Implementation Details of Proximal Policy Optimization | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | March 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | The ICLR Blog Track 2023 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | ppo, reinforcement learning, implementation, policy optimization | ||||||||||||||||||||||||
Event Title: | ICLR 2022 | ||||||||||||||||||||||||
Event Location: | Virtual | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Autonomous learning robots [RO] | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) Institute of Robotics and Mechatronics (since 2013) > Cognitive Robotics | ||||||||||||||||||||||||
Deposited By: | Raffin, Antonin | ||||||||||||||||||||||||
Deposited On: | 08 Dec 2022 16:12 | ||||||||||||||||||||||||
Last Modified: | 29 Mar 2023 00:53 |
Repository Staff Only: item control page