Nathaniel, Juan and Klein, Levente J and Watson, Campbell D and Nyirjesy, Gabrielle and Albrecht, Conrad M (2022) Aboveground carbon biomass estimate with Physics-informed deep network. In: NeurIPS 2022 Workshop, pp. 1-6. NeurIPS 2022, 2022-12-09, New Orleans, LA, USA.
PDF
5MB |
Official URL: https://www.climatechange.ai/papers/neurips2022/9
Abstract
The global carbon cycle is a key process to understand how our climate is changing. However, monitoring the dynamics is difficult because a high-resolution robust measurement of key state parameters including the aboveground carbon biomass (AGB) is required. Here, we use deep neural network to generate a wall-to-wall map of AGB within the Continental USA (CONUS) with 30-meter spatial resolution for the year 2021. We combine radar and optical hyperspectral imagery, with a physical climate parameter of SIF-based GPP. Validation results show that a masked variation of UNet has the lowest validation RMSE of 37.93 ± 1.36 Mg C/ha, as compared to 52.30 ± 0.03 Mg C/ha for random forest algorithm. Furthermore, models that learn from SIF-based GPP in addition to radar and optical imagery reduce validation RMSE by almost 10% and the standard deviation by 40%. Finally, we apply our model to measure losses in AGB from the recent 2021 Caldor wildfire in California, and validate our analysis with Sentinel-based burn index.
Item URL in elib: | https://elib.dlr.de/191502/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech, Poster) | ||||||||||||||||||||||||
Title: | Aboveground carbon biomass estimate with Physics-informed deep network | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | December 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | NeurIPS 2022 Workshop | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Page Range: | pp. 1-6 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | above biomass estimation, Sentinel 1 & 2 satellites, GEDI, machine learning | ||||||||||||||||||||||||
Event Title: | NeurIPS 2022 | ||||||||||||||||||||||||
Event Location: | New Orleans, LA, USA | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Date: | 9 December 2022 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Albrecht, Conrad M | ||||||||||||||||||||||||
Deposited On: | 05 Dec 2022 09:56 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:52 |
Repository Staff Only: item control page