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Abstract

The global carbon cycle is a key process to understand how our climate is changing.
However, monitoring the dynamics is difficult because a high-resolution robust
measurement of key state parameters including the aboveground carbon biomass
(AGB) is required. Here, we use deep neural network to generate a wall-to-wall map
of AGB within the Continental USA (CONUS) with 30-meter spatial resolution
for the year 2021. We combine radar and optical hyperspectral imagery, with a
physical climate parameter of SIF-based GPP. Validation results show that a masked
variation of UNet has the lowest validation RMSE of 37.93 + 1.36 Mg C/ha, as
compared to 52.30 £ 0.03 Mg C/ha for random forest algorithm. Furthermore,
models that learn from SIF-based GPP in addition to radar and optical imagery
reduce validation RMSE by almost 10% and the standard deviation by 40%. Finally,
we apply our model to measure losses in AGB from the recent 2021 Caldor wildfire
in California, and validate our analysis with Sentinel-based burn index.

1 Introduction

Aboveground carbon biomass (AGB) is an important component to monitor carbon cycle on the
local [} 2] and global scale [3, 4]]. A recent state-of-the-art light detection and ranging (LiDAR)
mission from NASA’s Global Ecosystem Dynamics Investigation (GEDI) generates a global yet
non-continuous sparse measurements of vegetation parameters, including AGB estimates with a
60-meter along-track and 600-meter across-track gaps between footprints [5]. Here, we apply a
Physics-informed deep network to generate a 30-meter resolution, wall-to-wall continuous AGB
estimate in CONUS for the summertime (June-August) 2021 period. The model is trained on more
than one million GEDI footprints using a combination of radar and optical imagery [6]. In addition,
we incorporate a measure of photosynthetic intensity as captured by solar-induced fluorescence
(SIF)-based gross primary production (GPP). SIF-based GPP is one of the key physical parameters
regulating AGB [[7, 18]. We validate our results using field-based AGB observations and evaluate their
consistency across climate zones. Finally, we use our high resolution AGB map to assess the impact
of wildfire, in terms of how much carbon biomass had been lost to the environment.
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2 Methodology

This section provides a detailed description of the data, models, and evaluation metrics used, and are
summarized in Figure[I]
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Figure 1: Schematic overview that summarizes our data-processing steps at the leftmost panel and
datacube generation during training and validation steps. The modeling process is iterated across
different data setups (SIF/S1/S2, S1/S2, and S2-only) in an ablation study.

2.1 Data Processing

GEDI is one of the current state-of-the-art spaceborne LiDAR missions to capture a detailed measure
of ecosystem structure [9]. However, the data generated is spatially sparse. Therefore, we attempt
to produce a dense 30-meter resolution AGB estimate using multiple input features including radar
and optical hyperspectral imagery from Sentinel-1 and Sentinel-2, as well as SIF-based GPP from
the OCO-2 mission [7]. We use the vertical co-polarization (VV) and vertical/horizontal cross-
polarization (VH) band of Sentinel-1, and the entire 12 bands of Sentinel-2. Furthermore, we produce
near-cloud-free optical imagery by taking the median value of non-cloudy pixel as defined by the
scene classification layer (SCL) of Sentinel-2. Finally, we perform grid cell geospatial matching to
combine the dataset together. The validation sites are situated in the Northwestern America [[10] and
New England [[11]].

2.2 Model and Experimental Setup

We benchmark our deep network model against linear regressor (LR), random forests (RF) [12], and
extreme gradient boosting (XGBoost) [13]] algorithms due to their reported robustness in climate-
related tasks [[14]. Specifically, we implement a masked variation of UNet [15] due to the sparsity
of our target AGB variable [16]]. The models are optimized using a randomized grid search and a
k-fold cross validation (k=5) approaches. We split the data into a 90-10 training-testing set, where set
here refers to pixels for ML-based models and tiles for deep networks. We use Adam optimizer [[17]]
with a learning rate of 0.01 and root-mean-squared error (RMSE) as our loss function. For the deep
network, we use a size 32 batching and implement a collection of image augmentations including
random horizontal and vertical flipping, as well as cropping to a 512x512 image size. The full deep
network modeling workflow is illustrated in Figure 2]

3 Results and Discussion

This section summarizes and validates our results, showcasing the application of our AGB 30-meter
resolution (Figure [3) to assess how much carbon has been released to the environment from a major
wildfire event.
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Figure 2: Our modeling workflow starting from training a multi-channel dataset using UNet and
evaluating with sparse GEDI footprints
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Figure 3: A 30-meter resolution AGB dense estimate for CONUS in the year 2021 summertime with
Physics-informed masked variation of UNet

3.1 Model Performance and Ablation Study

As summarized in Table |I|, UNet has the lowest validation RMSE of 37.93 + 1.36 Mg C/ha, as
compared to 81.95 £ 0.01 Mg C/ha, 53.37 £ 0.05 Mg C/ha, and 52.30 £ 0.03 Mg C/ha for linear
regressor, gradient boosting, and random forest algorithms respectively. Furthermore, models that
learn from SIF-based GPP, in addition to radar and optical hyperspectral imagery have lower validation
RMSE of 37.93 + 1.36 Mg C/ha than 41.99 + 3.23 Mg C/ha in the latter case. This error accounts
for 20-40% of the average AGB in CONUS, which is estimated by [[18} |5, 119] to be around 100 and
200 MgC/ha. Nonetheless, UNet still exhibits larger uncertainty across model runs than the other
ML-based models.

Table 1: Evaluation RMSE (Mg C/ha) for different combinations of inputs and models

Model Inputs Testing Validation
SIF/S1/S2 66.07 £ 0.06 81.95 £+ 0.01
Linear Regressor S1/S2 66.46 + 0.10 84.33 £0.00
S2-only 67.10 £ 0.11 90.99 £ 0.03
SIF/S1/S2 56.66 £ 0.06 53.37£0.05
XGBoost S1/82 57.35 £0.05 54.74 £0.03
S2-only 57.82 £0.02 54.81 £0.26
SIF/S1/S2 57.16 £0.05 52.30 £0.03
RF S1/52 58.05 £ 0.03 54.72 £ 0.06
S2-only 58.12 £ 0.02 54.88 £0.18
SIF/S1/S2  48.83+0.19 37.93+1.36
UNet S1/82 49.30 £0.18 41.99 £+ 3.23
S2-only 50.35 £ 0.43 45.93 £2.25




3.2 Consistency Check Across Climate Zones

Finally, we perform a consistency check to ensure that our AGB estimate agrees with expectations
from literature. Figure dillustrates the distribution of AGB estimate at pixel-level across the top-6
(by area size) Koppen-based climate zones in CONUS [20]. As expected, the highest AGB esimates
are observed at the dry summer temperate and humid subtropical regions (~ 70-300 MgC/ha), while
the lowest ones are at the arid and semi-arid regions (~ 5-15 MgC/ha) [21} 22} 123 19].

AGB estimates (Mg C/ha) by climate zones

GB estimates (Mg C/ha)

Figure 4: AGB estimates across different climate zones in CONUS - BWh: arid, Bsk: semi-arid, Csb:
dry summer temperate, Cfa: humid subtropical, Dfa: humid continental, Dfb: humid continental

3.3 Application: Wildfire Impact Assessment

Lastly, we apply our AGB estimate to evaluate how much AGB has been lost after a major wildfire
event [24]]. We analyzed the Caldor wildfire event at California in the year 2021. The left panel
in Figure E]highlights the difference between AGB after (June 2022) and AGB before (June 2021)
the fire, while the right panel indicates a normalized burn ratio (NBR) as derived from Sentinel-2

bands: (%); lower NBR value suggests a burned area. We observe a close relationship

between impact (AGB loss) and intensity (NBR). A robust AGB loss estimate, therefore, could help
institutions assess fire risk mitigation strategies and forecast potential fire hazard [25]], among many
other.
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Figure 5: Left panel: AGB loss due to Caldor wildfire; Right panel: NBR index where lower value
indicates more burning

4 Conclusion

In conclusion, we have demonstrated the transformation of sparse GEDI measurements into continu-
ous map using multimodal sensing of optical and radar satellites and how the addition of physical
parameter helps improve performance across models. And the use of a deep network, specifically the
masked variation of UNet, further improves performance. We showed that our AGB estimate agrees
with previous literature in terms of its consistency across climate zones. Lastly, we showcased how
our AGB estimate can be used to assess wildfire impact, among many other interesting yet critical
applications including for the evaluation of carbon credits and conservation projects for primary
forests.
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