Nathaniel, Juan und Klein, Levente J und Watson, Campbell D und Nyirjesy, Gabrielle und Albrecht, Conrad M (2022) Aboveground carbon biomass estimate with Physics-informed deep network. In: NeurIPS 2022 Workshop, Seiten 1-6. NeurIPS 2022, 2022-12-09, New Orleans, LA, USA.
PDF
5MB |
Offizielle URL: https://www.climatechange.ai/papers/neurips2022/9
Kurzfassung
The global carbon cycle is a key process to understand how our climate is changing. However, monitoring the dynamics is difficult because a high-resolution robust measurement of key state parameters including the aboveground carbon biomass (AGB) is required. Here, we use deep neural network to generate a wall-to-wall map of AGB within the Continental USA (CONUS) with 30-meter spatial resolution for the year 2021. We combine radar and optical hyperspectral imagery, with a physical climate parameter of SIF-based GPP. Validation results show that a masked variation of UNet has the lowest validation RMSE of 37.93 ± 1.36 Mg C/ha, as compared to 52.30 ± 0.03 Mg C/ha for random forest algorithm. Furthermore, models that learn from SIF-based GPP in addition to radar and optical imagery reduce validation RMSE by almost 10% and the standard deviation by 40%. Finally, we apply our model to measure losses in AGB from the recent 2021 Caldor wildfire in California, and validate our analysis with Sentinel-based burn index.
elib-URL des Eintrags: | https://elib.dlr.de/191502/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||||||
Titel: | Aboveground carbon biomass estimate with Physics-informed deep network | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Dezember 2022 | ||||||||||||||||||||||||
Erschienen in: | NeurIPS 2022 Workshop | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-6 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | above biomass estimation, Sentinel 1 & 2 satellites, GEDI, machine learning | ||||||||||||||||||||||||
Veranstaltungstitel: | NeurIPS 2022 | ||||||||||||||||||||||||
Veranstaltungsort: | New Orleans, LA, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsdatum: | 9 Dezember 2022 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||||||
Hinterlegt am: | 05 Dez 2022 09:56 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags