elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Large scale observations and strain partitioning analysis in Guatemala from SAR interferometry

Cosenza Muralles, Beatriz and Lasserre, Cécile and DeMets, Charles and De Zan, Francesco and Shau, Robert and Ansari, Homa and Parizzi, Alessandro and Lyon-Caen, Hélène and Feigl, Kurt (2021) Large scale observations and strain partitioning analysis in Guatemala from SAR interferometry. AGU Fall Meeting 2021, 2021-12-13 - 2021-12-17, New Orleans, USA.

Full text not available from this repository.

Official URL: https://www.agu.org/Fall-Meeting-2021/

Abstract

The interaction between the Cocos, Caribbean, and North America plates in Central America results in complex deformation mostly accommodated by the sub-parallel Motagua and Polochic left-lateral faults, north-south-trending extensional grabens south of the Motagua Fault, the Middle America subduction zone, and right-lateral faults along the Middle America volcanic arc. Large earthquakes associated with these faults include the destructive 1976 Mw 7.5 earthquake along the Motagua fault and the 2012 Mw 7.5 Champerico subduction thrust earthquake. The most recent GPS-based elastic-kinematic models of the region show that about 80% of the strain accumulation from the North America/Caribbean plates relative motion concentrates on the Motagua fault and 20% across the Polochic fault, with significant internal stretching of the Caribbean plate between Honduras and western Guatemala, a decreasing strike-slip rate from east to west along the volcanic arc, and lateral variations of coupling along the subduction zone. We propose the use of Synthetic Aperture Radar Interferometry (InSAR) to measure slip rates along faults in Guatemala, strain partitioning among them and potential internal deformation within blocks. We analyze Sentinel-1 radar images spanning from 2015 to 2020, from ascending and descending tracks, covering the whole Guatemala region. We use Distributed Scatterers (DS) Interferometry techniques adapted to large Sentinel-1 data sets to better assess and mitigate the various sources of noise. We present the first InSAR-based maps of interseismic velocity for this region, analyze these InSAR results over the whole surface covered by the tracks and along key profiles across main faults for a first comparison with GPS data and the GPS-based block model. The DS results show an overall good agreement with predictions from the GPS-based block model. These InSAR results along with GPS data will be used to refine the block model and estimate the lateral variations of interseismic slip deficit rates along major faults, as well as internal deformation within the western Caribbean plate.

Item URL in elib:https://elib.dlr.de/190844/
Document Type:Conference or Workshop Item (Speech)
Title:Large scale observations and strain partitioning analysis in Guatemala from SAR interferometry
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Cosenza Muralles, BeatrizUniversidad de San Carlos de Guatemalahttps://orcid.org/0000-0002-4626-2757UNSPECIFIED
Lasserre, CécileUniversity Claude Bernard Lyon 1https://orcid.org/0000-0002-0582-0775UNSPECIFIED
DeMets, CharlesUniversity of Wisconsin-Madisonhttps://orcid.org/0000-0001-7460-1165UNSPECIFIED
De Zan, FrancescoDLR-MFhttps://orcid.org/0000-0002-1643-2559UNSPECIFIED
Shau, RobertDLR-MFUNSPECIFIEDUNSPECIFIED
Ansari, HomaDLR-MFhttps://orcid.org/0000-0002-4549-2497UNSPECIFIED
Parizzi, AlessandroDLR-MFhttps://orcid.org/0000-0002-5651-8218UNSPECIFIED
Lyon-Caen, HélèneEcole Normale Supérieure Parishttps://orcid.org/0000-0002-6331-0108UNSPECIFIED
Feigl, KurtUniversity of Wisconsin-Madisonhttps://orcid.org/0000-0002-2059-6708UNSPECIFIED
Date:December 2021
Refereed publication:No
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:InSAR, Tectonics, tectonic strain analysis
Event Title:AGU Fall Meeting 2021
Event Location:New Orleans, USA
Event Type:international Conference
Event Start Date:13 December 2021
Event End Date:17 December 2021
Organizer:American Geophysical Union
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - SAR methods
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > SAR Signal Processing
Remote Sensing Technology Institute > EO Data Science
Deposited By: Eineder, Prof. Dr. Michael
Deposited On:25 Nov 2022 12:16
Last Modified:24 Apr 2024 20:52

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.