Knauer, Markus Wendelin and Denninger, Maximilian and Triebel, Rudolph (2022) RECALL: Rehearsal-free Continual Learning for Object Classification. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022. IEEE/RSJ. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), 2022-10-24 - 2022-10-26, Kyoto, Japan. doi: 10.1109/IROS47612.2022.9981968. ISBN 978-166547927-1. ISSN 2153-0858.
This is the latest version of this item.
PDF
2MB |
Official URL: https://ieeexplore.ieee.org/document/9981968
Abstract
Convolutional neural networks show remarkable results in classification but struggle with learning new things on the fly. We present a novel rehearsal-free approach, where a deep neural network is continually learning new unseen object categories without saving any data of prior sequences. Our approach is called RECALL, as the network recalls categories by calculating logits for old categories before training new ones. These are then used during training to avoid changing the old categories. For each new sequence, a new head is added to accommodate the new categories. To mitigate forgetting, we present a regularization strategy where we replace the classification with a regression. Moreover, for the known categories, we propose a Mahalanobis loss that includes the variances to account for the changing densities between known and unknown categories. Finally, we present a novel dataset for continual learning, especially suited for object recognition on a mobile robot (HOWS-CL-25), including 150,795 synthetic images of 25 household object categories. Our approach RECALL outperforms the current state of the art on CORe50 and iCIFAR-100 and reaches the best performance on HOWS-CL-25.
Item URL in elib: | https://elib.dlr.de/190097/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Additional Information: | Presentation: https://www.youtube.com/watch?v=P9buxiinVeI | ||||||||||||||||
Title: | RECALL: Rehearsal-free Continual Learning for Object Classification | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Journal or Publication Title: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1109/IROS47612.2022.9981968 | ||||||||||||||||
Publisher: | IEEE/RSJ | ||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||
ISBN: | 978-166547927-1 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Computer Vision, Continual Learning, Online Learning, Incremental Learning, Machine Learning, Deep Learning, Classification | ||||||||||||||||
Event Title: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022) | ||||||||||||||||
Event Location: | Kyoto, Japan | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 24 October 2022 | ||||||||||||||||
Event End Date: | 26 October 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Multisensory World Modelling (RM) [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition Institute of Robotics and Mechatronics (since 2013) > Cognitive Robotics | ||||||||||||||||
Deposited By: | Knauer, Markus Wendelin | ||||||||||||||||
Deposited On: | 05 Dec 2022 14:40 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:51 |
Available Versions of this Item
- RECALL: Rehearsal-free Continual Learning for Object Classification. (deposited 05 Dec 2022 14:40) [Currently Displayed]
Repository Staff Only: item control page